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Hauptberichter: Prof. Dr. Ali Alavi

Mitberichter: Prof. Dr. Hans-Joachim Werner

Mitberichter: Prof. Dr. Andreas Köhn
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Abstract

Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a prominent method

to calculate the exact solution of the Schrödinger equation in a finite antisymmetric basis

and gives access to physical observables through an efficient stochastic sampling of the

wavefunction that describes a quantum mechanical system. Although system-agnostic

(black-box-like) and numerically exact, its effectiveness depends crucially on the compact-

ness of the wavefunction: a property that gradually decreases as correlation effects become

stronger. In this work, we present two—conceptually distinct—approaches to extend the

applicability of FCIQMC towards larger and more strongly correlated systems.

In the first part, we investigate a spin-adapted formulation of the FCIQMC algorithm,

based on the Unitary Group Approach. Exploiting the inherent symmetries of the non-

relativistic molecular Hamiltonian results in a dramatic reduction of the effective Hilbert

space size of the problem. The use of a spin-pure basis explicitly resolves the different

spin-sectors, even when degenerate, and the absence of spin-contamination ensures the

sampled wavefunction is an eigenfunction of the total spin operator Ŝ2. Moreover, tar-

geting specific many-body states with conserved total spin allows an accurate description

of chemical processes governed by the intricate interplay of them. We apply the above

methodology to obtain results, not otherwise attainable with conventional approaches,

for the spin-gap of the high-spin cobalt atom ground- and low-spin excited state and the

electron affinity of scandium within chemical accuracy to experiment. Furthermore we

establish the ordering of the scandium anion bound states, which has until now not been

experimentally determined.

In the second part, we investigate a methodology to explicitly incorporate electron corre-

lation into the initial Ansatz of the ground state wavefunction. Such an Ansatz induces

a compact description of the wavefunction, which ameliorates the sampling of the con-

figuration space of a system with FCIQMC. Within this approach, we investigate the

two-dimensional Hubbard model near half-filling in the intermediate interaction regime,

where such an Ansatz can be exactly incorporated by a nonunitary similarity transforma-

tion of the Hamiltonian based on a Gutzwiller correlator. This transformation generates

novel three-body interactions, tractable due to the stochastic nature of FCIQMC, and

leads to a non-Hermitian effective Hamiltonian with extremely compact right eigenvec-

tors. The latter fact allows application of FCIQMC to larger lattice sizes, well beyond

the reach of the method applied to the original Hubbard Hamiltonian.
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Kurzfassung

”
Full Configuration Interaction Quantum Monte Carlo“ (FCIQMC) ist eine prominente

Methode zur Berechnung der exakten Lösung der Schrödinger Gleichung in einer finiten

antisymmetrischen Basis, die den Zugang auf physikalische Observablen durch eine ef-

fiziente stochastische Stichprobennahme der Wellenfunktion eines quantenmechanischen

Systems erlaubt. Obwohl diese system-agnostisch und numerisch exakt ist, hängt ihre

Effektivität entscheidend von der Kompaktheit der Wellenfunktion ab: eine Eigenschaft

die mit zunehmender Stärke der Korrelationseffekte graduell abnimmt. In dieser Arbeit

präsentieren wir zwei, konzeptionell sehr unterschiedliche, Ansätze um die Anwendbarkeit

von FCIQMC in Richtung größerer und stärker korrelierter Systeme zu erweitern.

Im ersten Teil dieser Arbeit untersuchen wir die Spin-adaptierte Formulierung des FCIQMC

Algorithmus mit Hilfe des Unitären Gruppen Ansatzes. Die Nutzbarmachung der inhärenten

Symmetrien des nicht-relativistischen molekularen Hamiltonoperators verursacht eine drama-

tische Reduktion der effektiven Hilbert Raum Größe eines Problems. Der Gebrauch einer

Spin-reinen Basis löst explizit zwischen unterschiedlichen Spin Sektoren auf; auch wenn

diese entartet sind. Zudem stellt das Fehlen von Spin-Kontamination sicher, dass die un-

tersuchte Wellenfunktion eine Eigenfunktion des Gesamtspin Operators Ŝ2 ist. Darüber

hinaus ermöglicht die Bestimmung eines spezifischen Vielteilchen-Zustandes mit erhal-

tenem Gesamtspin die genaue Beschreibung chemischer Prozesse, die vom intrikaten

Zusammenspiel dieser Zustände bestimmt sind. Da mit konventionellen Herangehensweisen

nicht bestimmbar, verwenden wir die oben beschriebene Methode zur Bestimmung der En-

ergiedifferenz zwischen dem Kobalt Quartett Grundzustand und angeregtem Dublett Zu-

stand sowie der Elektronenaffinität Scandiums in Übereinstimmung mit experimentellen

Ergebnissen innerhalb chemischer Genauigkeit. Außerdem etablieren wir die Ordnung

der gebundenen Zustände des Scandium Anions, die bis dato experimentell noch nicht

bestimmt wurde.

Im zweiten Teil dieser Arbeit untersuchen wir eine Methodik zur expliziten Einbindung

von Elektronenkorrelation in den ursprünglichen Ansatz der Grundzustandswellenfunk-

tion. Ein solcher Ansatz führt zu einer kompakten Form der Wellenfunktion. Dies

wiederum erleichtert die Stichprobennahme innerhalb des Konfigurationsraumes eines

Systems mit FCIQMC. Im Rahmen dessen untersuchen wir das zweidimensionale Hub-

bard Modell nahe Halbfüllung im mittleren Wechselwirkungsbereich. Dort ist ein solcher

Ansatz, basierend auf dem Gutzwiller-Korrelator, auf exakte Weise durch eine nichtu-

nitäre Ähnlichkeitstransformation des Hamiltonoperators umsetzbar. Diese Transforma-

XI



tion generiert neuartige Dreikörperwechselwirkungen, die durch die stochastische Natur

von FCIQMC überschaubar sind, und führt zu einem nicht-Hermiteschen effektiven Hamilton-

operator mit extrem kompakten rechten Eigenvektoren. Letztere ermöglichen die An-

wendung von FCIQMC bei zunehmenden Problemgrößen, weit über die Reichweite der

Methode, angewandt auf den originalen Hubbard Hamiltonoperator, hinaus.
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1
Introduction

“While it is never safe to affirm that the future of Physical Science has no

marvels in store even more astonishing than those of the past, it seems prob-

able that most of the grand underlying principles have been firmly

established and that further advances are to be sought chiefly in the rigorous

application of these principles to all the phenomena which come under our no-

tice. It is here that the science of measurement shows its importance where

quantitative work is more to be desired than qualitative work. An eminent

physicist remarked that the future truths of physical science are to be

looked for in the sixth place of decimals.”

–Albert A. Michelson, 1894

Spoken in the time of the deterministic world view of classical mechanics, the great physi-

cal discoveries in the beginning of the 20th century overthrew the above—rather unfortu-

nate—quote of Albert A. Michelson. The great paradigm shift in physics, heralded by the

quantum hypothesis of Max Planck in 1901, the discovery of the theory of special rela-

tivity and the photoelectric effect in Einstein’s annus mirabilis of 1905, together with the

formulation of quantum mechanics, by Max Born, Werner Heisenberg, Wolfgang Pauli,

Paul Dirac and Erwin Schrödinger—to name a few—, spelled the end for determinism

postulated by classical mechanics. The success of quantum mechanics led Dirac to the

almost Icarian quote:

“The general theory of quantum mechanics is now almost complete, the im-

perfections that still remain being in connection with the exact fitting in of the

theory with relativity ideas. These give rise to difficulties only when high-speed

particles are involved, and are therefore of no importance in the consideration

of atomic and molecular structure and ordinary chemical reactions [ . . . ]. The

underlying physical laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known,

and the difficulty is only that the exact application of these laws leads to

equations much too complicated to be soluble. It there fore becomes desirable

that approximate practical methods of applying quantum mechanics

should be developed, which can lead to an explanation of the main features

of complex atomic systems without too much computation.”

–Paul A. M. Dirac, 1929
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2

The two quotes share common features, although, I think it is safe to assume that physi-

cists, chemists and scientists in general have nowadays realised that scientific progress

happens in quite unpredictable ways. Nevertheless, Dirac’s claim is certainly warranted,

since quantum mechanics, especially when the effects of relativity are small enough to be

neglected, is the most robust and experimentally verified theory in our hands. Indeed,

we do have the basic equation, which allow us in theory to exactly describe any quantum

mechanical system from first principles. The “only” problem is that this equation, due to

the immense number of coupled degrees of freedom is impossibly hard to solve exactly,

except in very rare cases.

Dirac also foreshadowed the only possible route to solve this problem: developing approx-

imate methods that still capture the crucial physical features of the system at affordable

computational cost. The advent of computers gave rise to the new branch of compu-

tational chemistry and physics, aiming to explain the underlying physical mechanisms,

obtain new insights and even predict and design new materials and novel phases of matter,

by simulation rather than experiment. The rapid growth of both computing power and

resources∗ allows more and more complex systems to be simulated. However, the even

faster exponential growth of complexity limits numerical solutions and thus necessitates

the development of novel algorithms, approximations and even effective models, capturing

the relevant degrees of freedom.

A historical milestone towards the (exact) numerical solution is Hartree-Fock theory, in

which the troublesome interaction between particles—responsible for the coupled degrees

of freedom—is approximated by an effective, mean-field, single-particle potential. This

decoupling, while neglecting all correlation effects, † reduces the one many-body problem

to many—readily solvable—one-body problems and often yields qualitatively correct re-

sults for a wide range of systems. Although, correlation effects typically act on rather

small energy scales, they are in many cases still very relevant and—at least a major

part—must be taken into account to quantitatively describe most chemical processes and

physical properties.‡

While successful in studying weakly correlated systems, standard mean-field theories, but

even perturbative approaches that go beyond Hartree-Fock, can become questionable or

even erroneous when employed to study strongly correlated systems; which have drawn a

lot of attention in the past couple of decades, due to their interesting macroscopic prop-

erties and microscopic structure. A different, wavefunction based, nonperturbative and

system-agnostic approach to deal with the full complexity of the problem—ensuring an

explicit account of correlation effects—is based on the (quantum) Monte Carlo technique,

which tries to circumvent the exponential wall by attempting a stochastic, instead of a

∗According to Moore’s law.
†Except for the Fermi correlation, due to the Pauli- or exchange repulsion.
‡As a drastic example, HF theory is not able to correctly describe the dissociation process of H2.
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deterministic solution.∗ A prominent combination of using a stochastic approach to deal

with the full complexity of the problem at hand is given by Full Configuration Interaction

Quantum Monte Carlo (FCIQMC). Its development and application to strongly correlated

systems is the main topic of this thesis.

1.1 Scope and Overview of the Thesis

All the relevant information of a quantum mechanical state is contained in the wavefunc-

tion of a system. Instead of describing all possible states of a system, Monte Carlo (MC)

methods rely on random numbers to sample the physically most relevant and represen-

tative ones and draw conclusions from them to get an understanding of the underlying

physical properties of a system. In particular, FCIQMC attempts an exact solution—in a

finite basis—to an electronic problem by an efficient sampling of the wavefunction through

the random walk of particles in a discrete antisymmetrised space.†

However, due to the immense number of coupled degrees of freedom, the exact wavefunc-

tion is an intractable object. An efficient sampling thereof requires various approximation

to reduce the complexity and condense the most relevant features into a highly compact

representation. For systems with weakly interacting particles the wavefunction is domi-

nated by a single configuration (the single-reference case) and thus an efficient sampling

thereof is readily possible. However, for strongly correlated systems a multitude of configu-

rations are of equal importance for the characterisation of the system (the multi-reference

case). Their delicate, dynamic interplay exacerbates a compact description and thus hin-

ders a straightforward application of the MC approach to efficiently sample the most

relevant physical features.

The scope of this thesis is the further development of the FCIQMC method to improve

the applicability to strongly correlated electron systems of increasing size and complexity.

This can only be achieved by a systematic reduction of the huge number of degrees of

freedom and development of techniques to induce a more compact representation of the

relevant physical features contained in the wavefunction, which in turn allows a more

efficient sampling with MC methods. We live in a macroscopic world after all,‡ and

this applicability to increasing system sizes is necessary to draw relevant conclusions for

realistic systems by extrapolation techniques.§

This reduction of degrees of freedom—to some part—is already achieved by the stochastic

approach via the Monte Carlo method. By relying on a stochastic sampling we focus only

∗Which is kind of fitting for the nondeterministic world of quantum mechanics.
†To implicitly account for the antisymmetry property of fermionic wavefunctions.
‡Which seems infinitely large for our tiny studied quanta.
§Either to the complete basis set limit in the field of quantum chemistry or to the thermodynamic

limit in condensed matter physics.



4 1.1. Scope and Overview of the Thesis

on the most relevant states, instead of seeking a deterministic solution to the problem.

However, for strongly correlated electron systems this approach alone is not sufficient, as

the antisymmetric nature of fermionic wavefunctions prohibits a straightforward appli-

cation of a naive MC approach, known as the fermion sign problem. Thus, additional

approximations and novel algorithms are necessary to further compress the information

stored in the wavefunction and in turn extend the applicability of quantum Monte Carlo

approaches.

In my work I studied two approaches to accomplish this feat:

I. To reduce the degrees of freedom in a simulation of a quantum mechanical sys-

tem and to better understand and interpret the results, the incorporation of the

inherent symmetries and corresponding conservation laws of the systems are of

great use. For this reason, the first part of the thesis deals with the implementation

of the total SU(2) spin symmetry of nonrelativistic ab-initio Hamiltonians in

the FCIQMC method. The use of a spin-adapted basis reduces the effective Hilbert

space size of a problem by block-diagonalization of the Hamiltonian into different

total spin symmetry sectors. Additionally, this allows to distinguish between dis-

tinct—even (near-)degenerate—spin states and entirely removes spin contamination

of the sampled wavefunction, which is expected to be beneficial to the convergence

behaviour of the projective FCIQMC technique. A conserved total spin quantum

number also allows to target and identify specific spin-eigenstates, which facilitates a

correct physical interpretation of calculations and description of chemical processes

governed by the intricate interplay of them.

II. If symmetry alone does not suffice to reduce the vast number of degrees of freedom,

we need to find a way to further efficiently compress the most relevant physical

features in our description of a system. It is important to perform this in a controlled

manner with a faithful account of the errors introduced due to this compression.

However, it is possible without loss of generality to account for some part of the

correlation between particles already in the initial Ansatz of the solution to the

problem. The second part of the thesis is concerned with the implementation of an

explicitly correlated wavefunction Ansatz via similarity transformation

in quantum lattice systems. This Ansatz induces modified and novel interactions

in the description of a system and compresses the relevant physical information

encoded in the ground state wavefunction in an extremely compact way. This allows

us to apply the FCIQMC approach to system sizes previously far out of reach for

the method.

In the remainder of this chapter the basic problem we would like to solve is presented

and the details prohibiting an exact solution are discussed, with an emphasis on electron

correlation effects. A small overview of common approaches other than Monte Carlo

methods to solve the problem is given. In particular, techniques we compare our FCIQMC
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results against, such as the coupled cluster (CC) and density matrix renormalization group

(DMRG) approaches are discussed.

In Chapter 2 the concepts of the (quantum) Monte Carlo (QMC) method and its applica-

tion to quantum mechanical systems is introduced. After a brief introduction of the basic

principles, the position of our method of choice, Full Configuration Interaction Quantum

Monte Carlo (FCIQMC), compared to some examples of the vast plethora of QMC meth-

ods is laid out. Again with a special mention of the method providing reference results

for our calculations, auxiliary-field quantum Monte Carlo (AFQMC).

In Chapter 3 the importance of symmetry in electronic structure calculations and physics

and chemistry in general is discussed, with special attention to the total SU(2) spin

symmetry. The theoretical framework of the unitary group approach is explained in depth,

as it, and its graphical extension by Shavitt, are the basis to implement the FCIQMC

method purely in a spin-adapted basis, without any reference to a Slater determinant

basis.

The actual computational implementation of the graphical unitary group approach to

formulate FCIQMC in a spin-adapted basis is discussed in Chapter 4. The results ob-

tained with the spin-adapted FCIQMC method (GUGA-FCIQMC) for ab-initio quantum

chemical problems and the Hubbard model are presented in Section 4.4, which is followed

by a conclusion and outlook of this approach in Section 4.5.

In Chapter 5 an explicitly correlated wavefunction Ansatz in FCIQMC for quantum lattice

systems is presented. The Hubbard model is revisited and the Gutzwiller Ansatz as the

main example of a correlated wavefunction Ansatz is presented. An explicitly correlated

Ansatz in FCIQMC is incorporated via a similarity transformation of the Hamiltonian,

which maps the electron correlation onto additional interaction terms in the transformed

Hamiltonian. This allows an extremely compact wavefunction description of the system,

which enables application of the FCIQMC method to unprecedented systems sizes. The

results are presented in Section 5.5, which is followed by a conclusion and outlook of this

approach in Section 5.6.

A final summary, conclusion and an outlook for future work and applications of the

method presented in this work is given in Chapter 6.

1.2 Electronic Structure Theory

With relativistic effects neglected, the time evolution of a quantum mechanical system of

N interacting particles is described by the time-dependent Schrödinger equation

i~
∂

∂ t
Ψ(x, t) = ĤΨ(x, t), with x = (r, σ) and r ∈ R3N , (1.1)
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where x is the combination of the 3N dimensional space variable r and spin. The Hamilton

operator Ĥ in Eq. (1.1) characterizes the energy of the system and governs its dynamics.

Ψ(x, t) is the position-space wavefunction of the quantum system, which is a function of

all the space, time and spin coordinates of all N particles in the system. It contains all

relevant physical information of a state. If the Hamiltonian in Eq. (1.1) does not explicitly

depend on time, the time-independent Schrödinger equation is given by

ĤΨ(x) = EexΨ(x), with Ψ(x, t) = e−iEext Ψ(x), (1.2)

with Eex being the exact total energy associated with the eigenstate Ψ(x) of the system.

Since the wavefunction Ψ(x) is a function of the continuous space variables of all N in-

teracting particles, solving Eq. (1.2) exactly is impossible, except for rare special cases.∗

To solve Eq. (1.2) numerically, approximations have to be employed. For fermionic sys-

tems, to avoid the dilemma of the dependence of the wavefunction on the continuous

space variables and cast Eq. (1.2) onto a finite problem, Ψ(x) is approximated by a linear

combination of antisymmetric Slater Determinants (SDs) |Di〉

|Ψ〉 =
∑
i

ci |Di〉 , with |Di〉 =
1√
N !

∣∣∣∣∣∣
φ1(x1) φ1(x2) ··· φ1(xN )
φ2(x1) φ2(x2) ··· φ2(xN )

...
...

. . .
...

φN (xN ) φN (x2) ··· φN (xN )

∣∣∣∣∣∣ , (1.3)

formed from a set of 2n orthonormal spin-orbitals {φm(xl)}. φm(xl) is given as a product

of n spatial components ρk(rl), with k = 1, . . . , n, and a function of spin χ(σl), leading to

a total of 2n spin-orbitals, {φσk(xl)} in short, with σ = {↑, ↓} for fermionic systems. With

a finite single-particle (or one-body) basis {φσk(xl)}, the SD expansion is also finite and

thus Ĥ can be expressed as a square matrix in the SD basis and Eq. (1.2) can be cast in

the form of an eigenvalue equation

Ĥ |Ψ〉 = E |Ψ〉 , (1.4)

with E being the approximation to the exact energy Eex of Eq. (1.2) within the chosen

basis set. The full spectrum of (1.4) can be obtained by exact diagonalization (ED) of the

operator Ĥ constructed in the basis of all possible SDs formed from the single-particle

basis, called Full Configuration Interaction (FCI), see Sec. 1.7.6, in the field of quantum

chemistry. However, ED is already very expensive even for a small number of basis

states. Nevertheless, since the important physical and chemical processes are in general

determined by the ground state and a few low-lying excited states Eq. (1.4) can also be

solved by iterative procedures, such as the Power,110 Lanczos176 or Davidson63 method,

with a far better scaling compared to ED. In the limit of a complete basis set (CBS) E

will be identical to Eex, but the SD expansion will be again infinite and thus intractable.

Nevertheless, by a systematic increase in the chosen basis set size the CBS limit can be

∗The one-electron hydrogen atom and H+
2 molecule for example.
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approached in a controlled manner and various extrapolation schemes exist to obtain an

approximate CBS limit result at least.133

We have not talked about the explicit form of the Hamiltonian Ĥ yet, since the Schrödinger

equation describes all nonrelativistic quantum mechanical systems in general. For ab-

initio electronic structure calculations (ESC) in condensed matter physics and quantum

chemistry Ĥ, without external fields, has following form in atomic units

Ĥ =
N∑
i

(
−1

2
∇2
i −

Nn∑
a

Za
|ri −Ra|

)
+

N∑
i<j

1

|ri − rj|
+

Nn∑
a<b

ZaZb
|Ra −Rb|

, (1.5)

where the sums are over the N electrons and Nn nuclei, ∇2
i is the kinetic energy and ri

the position of electron i, Za are the nuclear charges and Ra is the position of nucleus a.

The Born-Oppenheimer31 approximation is applied, where the separation of the motion of

electrons and nuclei, due to their vastly different masses, is assumed. Thus, Ĥ describes

the correlated motion of electrons, −∇2
i /2−

∑
a Zar

−1
ia with ria = |ri−Ra|, interacting via

the Coulomb force r−1
ij , with rij = |ri − rj| in a potential generated by the charges of the

fixed nuclei. In this work our aim is to solve the electronic problem, so |Ψ〉 will from now

on represent the N -electron wavefunction. In second quantization, the nonrelativistic

molecular electronic Hamiltonian (1.5) in the Born-Oppenheimer approximation takes

following form

Ĥ =
n∑
ij

∑
σ=↑,↓

tija
†
iσajσ +

1

2

n∑
ijkl

∑
σ,τ=↑,↓

Vijkl a
†
iσa
†
kτalτajσ + hnuc, (1.6)

with n being the number of spatial orbitals. a†iσ and aiσ are the anticommuting fermionic

creation and annihilation operators, [a†iσ, ajτ ]+ = δijδστ , of an electron in spin-orbital

(i, σ). tij and Vijkl are the molecular one- and two-body integrals133

tij =

∫
φ∗i (r)

(
−1

2
∇2 −

Nn∑
a

Za
|r− ra|

)
φj(r)dr (1.7)

Vijkl =

∫ ∫
φ∗i (r1)φ∗k(r2)φj(r1)φl(r2)

|r1 − r2|
dr1dr2, (1.8)

which are evaluated in the chosen spin-orbital basis {φi}. The electron independent

nuclear potential hnuc =
∑

ab ZaZbr
−1
ab can be directly added to Ĥ, since it is just an

equal shift of all electronic energies. As a final note, since we deal with the electronic

structure, the obtained solution |Ψ〉 of Eq. (1.4) must be totally antisymmetric under the

exchange of two electrons |Ψ(x1,x2)〉 = − |Ψ(x2,x1)〉 and thus obey the Pauli exclusion

principle.∗

∗This antisymmetry property is automatically ensured in the 2nd quantized formulation with anti-
commuting fermionic creation and annihilation operators and with an expansion of |Ψ〉 in antisymmetric
SDs.
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However, even in a finite basis the exact solution to Eq. (1.4) is a formidable—in most cases

even impossible—task. The Coulomb interaction term, r−1
ij in Eq. (1.5) and equivalently

the two-body term in Eq. (1.6), correlates all electrons and thus the problem is not

separable in distinct one-body systems, but a full many-body treatment is necessary. The

space of this many-body problem, which is the number of SDs that can be created from

the spin-orbital basis, the so called Hilbert space size∗ increases combinatorially with the

number of electrons and orbitals. This scaling makes the exact solution to (1.4) possible

only up to N = n ≈ 18 − 20.† Because of this we have to rely on approximate solutions

even for the expansion in a finite single-particle basis.

Thus, in addition to the hierarchy of the single-particle basis set size, there exists a

hierarchy of many-body methodologies, based on different sorts of approximations. In

general, the closer a method attains the exact solution the more similar the computational

cost increases. So the task of modern electronic structure theory is to find more and more

elaborate approximations to come as close as possible to the exact solution of the problem

at hand, while keeping the computational cost at a moderate level. Figure 1.1 sketches the

relationship of the hierarchy in the one-body basis set size and level of methods, where only

a combined effort can reach the exact solution to the full Schrödinger equation (1.2).

1.3 Symmetry in Electronic Structure Calculations

Symmetry is a concept of paramount importance in physics and chemistry. An observable

of a physical system, represented by an operator Ô, which is unchanged under some

general transformation, represented by an operator T̂ , is said to have the symmetry related

to the operation T̂ . For example if the temperature T in a room is homogeneous and

thus independent of the spatial position, the continuous spatial translation T̂ : ~r →
~r + a is a symmetry of T . The operation T̂ can be of continuous—e.g. rotations of a

circle—or discrete type—i.e. the reflection along a given axis—. Continuous symmetries

are described by Lie groups75 and discrete symmetries by finite groups.174

The invariance of an observable Ô under a transformation T̂ is equivalent to the vanishing

commutator

[ Ô, T̂ ] = 0. (1.9)

Noether’s theorem220 proves, that every symmetry of a system is related to a conserved

observable. Examples are:

∗For a system of fixed number of particles. If the number of particles is variable or unknown, the even
larger Fock space has to be considered.
†Of course for a smaller number of electrons, a larger number of orbitals feasible.
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Symmetry Transformation T̂ Conserved quantity

Translation in time t→ t+ a Energy

Translation in space ~r → ~r + ~a Momentum

Rotation in space ~r → R̂~r Angular momentum

Coordinate inversion ~r → −~r Spatial parity

Charge conjugation q → −q Charge parity

Time reversal t→ −t Time parity

U(1) gauge transformation Ψ(~r, t)→ eiΦ Ψ(~r, t) Electric charge

Symmetries that commute with the Hamiltonian Ĥ of a system, [ Ĥ, T̂ ] = 0, are of special

importance in electronic structure calculations (ESC). Since a set of commuting operators

can be simultaneously diagonalized, utilising the eigenfunctions |Φ〉 of the operator T̂ ,

causes Ĥ to have a block-diagonal structure. The blocks correspond to different symmetry

sectors related to the “good”, conversed quantum numbers λ, with T̂ |Φ〉 = λ |Φ〉 and

thus the eigenvalues λ can be used to specify the eigenstates of Ĥ. The block-diagonal

structure reduces the computational effort of diagonalizing Ĥ. In addition, problems, due

to degeneracies of energy eigenvalues of Ĥ belonging to different symmetry sectors of T̂ ,

can be avoided. The use of symmetry in ESCs also allows the straightforward calculation

of excited states, if they belong to different symmetry sectors than the ground state of

Ĥ.

Common symmetries used in ESCs are:

– Discrete translational symmetry on a lattice, by the use of a momentum space

basis.

– Point group symmetries of lattices and molecules, by the use of symmetry-adapted

molecular orbitals (MOs).

– Orbital angular momentum conservation by the usage of a basis, based on the

spherical harmonics Ylm.

– Conservation of the Ŝz projection of the total spin, by the use of a Slater-determinant

basis with fixed ms eigenvalue of Ŝz.

Concerning the last point, a Slater determinant |Di〉 constructed from a set of single-

particle spin-orbitals, given as the product of a spatial part times a spin function, φm(x) =

φσk(x) = ρk(r) · χσ(τ), with σ, τ = {↑, ↓} and the combined spatial and spin variable

x = (r, τ), obeys

Ŝzρk(r)χσ(τ) = ρk(r)Ŝzχσ(τ) =

−~
2
φσk(r, τ)δστ for σ =↓

+~
2
φσk(,τ)δστ for σ =↑,

(1.10)

is always an eigenfunction of the z-projection operator of the total spin, as Ŝz only acts
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on the spin part χσ(τ) of the basis state φσk(x).

MB VDZ VTZ
. . .

CBS

HF

CISD

MRCI

. . .

FCI
Exact

Basis set size

Method

Fig. 1.1: Relationship of the hierarchy of
basis set size and level of methodology
with the quest to reach the exact solution
to quantum mechanical system described
by the Schrödinger equation (1.2).133 The
acronyms shown are explained in the text.
On one hand, by improving the method,
we want to reach the exact (Full Con-
figuration Interaction) result for a given
basis set. And on the other hand, by
increasing the basis set size, we want
to reach the Complete Basis Set (CBS)
limit—desirably with FCI accuracy.

However, as one can see in Eq. (1.5), the non-

relativistic, molecular Hamiltonian does not de-

pend on spin at all, and thus, in addition to

the z-projection of spin, the total spin is also a

conserved quantity, indicated by the vanishing

commutators

[ Ĥ, Ŝz ] = [ Ĥ, Ŝ2 ] = 0. (1.11)

The use of this total spin conservation and the

accompanying total spin rotation symmetry in

the FCIQMC framework is a major topic of this

thesis and is more elaborated on in Chapters 3

and 4.

1.4 The Hubbard Model

In addition to the hierarchy of basis sets and

methods, another route to find approximate so-

lutions of the Schrödinger is to identify the most

important degrees of freedom of a quantum me-

chanical system and instead of solving the full

ab-initio Hamiltonian (1.5) derived from first

principles, derive an effective model Hamiltonian capturing the most important physical

aspects and solve for the low-energy features of the studied system.

A prime example of such a model system is the single-band Hubbard model, the sim-

plest model for interacting electrons on a lattice. The Hubbard Hamiltonian in second

quantization is given by

Ĥ = −t
∑

〈i,j〉,σ=↑,↓

a†i,σaj,σ + U
∑
i

ni,↑ni,↓, (1.12)

where a
(†)
i,σ annihilates (creates) an electron with spin σ =↑, ↓ at a localized site i, ni,σ =

a†i,σai,σ is the number operator on site i with spin σ, t is the hopping strength, U is the

purely local on-site Coulomb interaction and the sum over i and j is restricted to nearest-

neighbour sites indicated by 〈i, j〉. It was original introduced to study the metal-insulator

transition and magnetism in narrow energy d- and f -bands.122,142,143,154 It is however also

believed that the Hubbard model captures the most important physics of the CuO2 planes

in high-temperature superconducting cuprates.8,16,81,371 The CuO2 planes of cuprates are
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responsible for their superconducting properties and band-structure calculations204,368

show the copper 3d and oxygen 2p orbitals are the dominant factors for their electronic

properties. The half-filled antibonding molecular orbital (MOs) formed from the Cu

3dx2−y2 and O 2px/y atomic orbitals (AOs) are the only states with a significant dispersion

close to the Fermi energy of the system.88 Thus, the low energy physics of the CuO2 planes

of the cuprates can be mapped to the two-dimensional repulsive (U > 0) Hubbard model,

which is depicted schematically in Fig. 1.2.

The Hamiltonian (1.12) has a close resemblance to the more general Pariser-Parr-Poble

(PPP) Hamiltonian.240,241,253 The PPP and Hubbard Hamiltonians are based on a similar

approximation to the general ab-initio Hamiltonian (1.6), known as the zero differential

overlap (ZDO) or complete neglect of differential overlap (CNDO).∗ In this approximation

the differential overlap between basis states is neglected in the two-body integrals (1.8)149

leading to Vijkl = Viikkδijδkl.
252,255 The Hubbard model further employs the restriction of

a uniform hopping between nearest-neighbours only and purely on-site U = Viiiiδijδklδik.

Whereas the PPP model is the CNDO approximation applied to systems in a basis with

π electrons only.

Despite its conceptual simplicity—the sum of a simple tight-binding model accounting for

the kinetic energy and a purely local Coulomb interaction term—the only exact results

for the Hubbard model are available for the one-dimensional case via the Bethe-Ansatz186

and a few limiting cases in more than one dimension (U = 0 by Fourier transformation

and U = 0 already diagonal in a real-space basis).† The two parameters t and U of

the Hubbard model can be reduced to the relative strength of the hopping and Coulomb

term U/t. The intricate dynamic interplay of the kinetic hopping term and the Coulomb

on-site interaction—especially in parameter ranges where neither of them can be assumed

as a small perturbation U/t ≈ 8− 12—make exact solutions for reasonably large systems

sizes impossible and approximate numerical methods struggle to identify the different

near degenerate low energy phases.

However, not only due to its physical application, the Hubbard is an interesting model to

study from a theoretical point of view. As it is the simplest possible model for strongly

interacting electrons, as it only accounts for the motion of electrons through lattice sites

and the shortest possible, on-site interaction. The Hubbard model will be discussed more

thoroughly in Sec. 4.4.4, 5.2 and 5.3.

∗Strictly speaking the CNDO additional implies a treatment of valence electrons only.
†The case of infinite dimensions is also exactly solvable via an exact mapping to an impurity model7

and consequent solution with dynamical mean-field theory.102,211
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Fig. 1.2: (Left) Half-filled elec-
tronic active antibonding configu-
ration of the copper 3dx2−y2 and
oxygen 2px and 2py orbitals in the
CuO2 planes of cuprates. (Right)
Mapping to the two-dimensional
Hubbard lattice model of the
CuO2 planes with hopping t be-
tween nearest-neighbours an on-
site Coulomb repulsion U .
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1.5 Hartree-Fock Theory

One of the simplest approximation in ab-initio wavefunction theory is the Hartree-Fock

(HF) method.93,126 HF theory is usually the basis and starting point for many more elabo-

rate methods and is historically of paramount importance in the development of electronic

structure theory. In HF theory the exact N -electron wavefunction |Ψ〉 is approximated

by only a single Slater determinant,299 |ΦHF 〉. The one-electron spin-orbitals, denoted in

short as {φσk}, from which |ΦHF 〉 is constructed are variationally optimized to minimize

the energy expectation value

EHF = min
φk
〈ΦHF (φσk)|Ĥ|ΦHF (φσk)〉 (1.13)

with 〈ΦHF |ΦHF 〉 = 1 and the constraint
〈
φσi
∣∣φτj 〉 = δijδστ . The variational optimization

in the space of {φσk} consists of unitary transformation within the spin-orbital basis. So

|ΦHF 〉 can parametrized as

|ΦHF 〉 = e−κ̂ |0〉 , with κ̂ =
∑
ij,στ

κIJ a
†
i,σaj,τ , (1.14)

with I = (i, σ), J = (j, τ) and κIJ = −κ∗JI forming an anti-Hermitian matrix of orbital

rotation parameters, to ensure eκ̂ to be unitary. |0〉 in Eq. (1.14) is an arbitrary initial

Slater determinant. With the Ansatz (1.14) Eq. (1.13) is then minimized with respect to

the rotation parameters κIJ . In this formulation the constraint
〈
φσi
∣∣φτj 〉 = δijδστ is auto-

matically fulfilled, since unitary transformations will leave the spin-orbitals orthonormal.

One can see from the form of κ̂ in Eq. (1.14) orbital rotations can be formulated as single

excitation operators. In the final HF solution, these single excitations will be minimized

leading to the Brillouin’s theorem, that the matrix elements between single excitations

and the HF states are zero,315 〈ΦA
I |Ĥ|ΨHF 〉 = 0, with |ΦA

I 〉 = a†a,σai,σ |ΦHF 〉.

Physically the HF method can be understood as solving the Schrödinger equation of a

single electron in the mean-field created by the remaining N−1 electrons. The correlation

between electrons is treated in an averaged way and thus the single N -body problem can

be separated into N one-body problems.
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In the restricted Hartree-Fock (RHF) method the same set of spatial orbitals, |φi〉, is

used for both the ↑- and ↓-spin component of |φσi 〉. Thus, the one-body operator t̂ of the

original Hamiltonian (1.6) and the averaged Coulomb repulsion of the electrons, yielding

the effective one-electron Fock potential, V̂eff =
∑

k(2Vijkk − Vikkj), are combined in the

Fock operator

f̂ =
∑
ij

fij Êij, with fij = tij +
∑
k∈occ

(2Vijkk − Vikkj), (1.15)

with the spin-free excitation operators, Êij =
∑

σ a
†
iσajσ, and the summation over occupied

spatial orbitals k. The canonical RHF orbitals are obtained by diagonalizing

f̂ |φi〉 = εi |φi〉 , (1.16)

yielding the Hartree-Fock equations, where the effective Fock potential depends on the

form of the occupied orbitals k.∗ For canonical Hartree-Fock orbitals† εi can be interpreted

as the orbital energies. The equivalent treatment of the spin-part in the RHF method

leads to the n lowest-in-energy spatial orbitals to be doubly occupied, yielding the so

called closed-shell HF state. However, this restriction means that RHF only works for an

even number of electrons. For open-shell systems the unrestricted HF (UHF) method19,254

optimizes the ↑- and ↓- spin-orbitals independently, which breaks the total spin symmetry

of the system and thus, UHF solutions are no longer eigenfunction of the Ŝ2 operator.

Restricted open-shell HF (ROHF) theory268 is able to treat open-shell system and the

ROHF solution is at the same time an eigenstate of the total spin operator Ŝ2.

In both approaches, due to nonlinear parameters κIJ in (1.13) and dependence of f̂ on the

solved for orbitals in (1.16), the solution must be found self-consistently by iteration. Due

to the necessity of an iterative procedure the HF method is also called the self-consistent

field (SCF) method.

1.6 Correlation Energy

The averaged description of the interaction between electrons in the HF method of course

does not represent the physical reality. Nevertheless, for many systems the HF method

yields surprisingly good results, not very far from the exact solution for a given basis set.

The correlation energy is defined as the difference between the exact solution and the HF

energy‡

Ecorr = Eexact − EHF . (1.17)

∗Which might change after optimization!
†The HF state is invariant to unitary transformations of the occupied orbitals, thus the canonical HF

orbitals are not the only possible solution.
‡Strictly speaking the correlation energy is defined with both Eexact and EHF in the CBS limit.
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In weakly correlated systems, where the electrons barely interact, the mean-field HF model

is a good description and more elaborate methods based on |ΦHF 〉 will be probably suffi-

cient to yield excellent results.

For many interesting systems however the HF method fails miserably, since the intricate

correlated motion of electrons can not be described by a mean-field approach. These

systems are called strongly correlated systems and all methods going beyond Hartree-

Fock have the goal to determine the remaining missing correlation energy. In quantum

chemistry there is a discrimination between two forms of correlation, although this dis-

tinction is arguably not completely well-defined and the two concepts are not mutually

exclusive.

Static correlation is present if multiple states in the ground state wavefunction expan-

sion of |Ψ〉 in SDs are of equal importance and/or degenerate in energy, naturally defying

a single-reference description. This can be the case for systems with multiple singly oc-

cupied spatial orbitals (open-shells) or for molecules near dissociation. In general these

systems can not be well described by a single Slater determinant and a multi-reference

treatment is necessary.
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0.0

0.2

0.4

0.6

0.8

1.0

|x
|

Fig. 1.3: Approximation of the non-
differentiable function f(x) = |x| by
even ordered polynomials up to or-
der 20.

Dynamic correlation is associated with the actual

physical repulsion of electrons due to the Coulomb

force. An important consequence of this is related

to the slow convergence of basis set extrapolations,

due to the dynamic behaviour of electrons in close

proximity. If two electrons coincide in space the

electronic molecular Hamiltonian (1.5) becomes sin-

gular, while the local energy ĤΨ(r)/Ψ(r) remains

constant. To balance the singularity of Ĥ, the ex-

act eigenfunction Ψ(r) must have a nondifferentiable

behaviour∗

lim
rij→0

(
∂Ψ

∂ rij

)
av

=
1

2
Ψ(rij = 0) (1.18)

at electron coalescence (r12 = 0) resembling a cusp, thus called electronic cusp condi-

tion156,200 or Kato’s cusp condition. The standard Ansatz of Ψ(r) as a product of single-

particle orbitals, i.e. Slater-type orbitals (STOs),298 † Gaussian-type orbitals (GTOs)37,132

or correlation consistent basis sets by Dunning,76 struggles to capture the nondifferentiable

behaviour of the exact wavefunction. This difficulty is part of the reason for the necessity

of large basis set expansion sizes, and illustrated in Fig. 1.3 by the example of an approx-

imation of the nondifferentiable function f(x) = |x| by polynomials of even order. An

Ansatz to take this property of Ψ(r) explicitly into account is discussed in Sec. 1.7.7.

∗Spherically averaging is assumed in Eq. (1.18).
†However STOs are able to correctly describe the related nuclear cusp condition.
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1.7 Post-Hartree-Fock Methods

To correctly describe the interesting physics and chemical properties of system governed

by strong correlation effects, where mean-field treatments inevitably fail, more elaborate

approaches to capture the dynamic interaction between particles have to be employed.

Due to the paramount importance of the HF method, theories and approaches that ex-

pand on the result obtained by the mean-field solution, thus go beyond HF, are in general

categorized under the name of post-Hartree-Fock methods. Here only a selection of im-

portant ones —with a focus on methods used as comparison for the FCIQMC results—are

briefly discussed.

1.7.1 Multi-Configurational Self-Consistent Field Method

For systems with strong static correlation, with a multitude of equally important states

contributing to the ground state, the Multi-configurational Self-Consistent Field (MC-

SCF)133 method is a natural and applicable extension of the HF approach. In MCSCF

the wavefunction is expanded as a linear combination of several important SDs (configu-

rations),

|ΦMC(κ, c)〉 = e−κ̂
∑
i

ci |Di〉 (1.19)

whose expansion coefficients ci and orbital-rotation parameter κ are simultaneously opti-

mized to yield the lowest possible variational energy

EMC = min
κ,c

〈ΦMC(κ, c)|Ĥ|ΦMC(κ, c)〉
〈ΦMC(κ, c) |ΨMC(κ, c)〉

. (1.20)

As in the HF method, due to the nonlinear appearance of the coefficients, this optimization

has to be carried out iteratively until convergence is reached. The choice of the states to

be considered, {Di}, is the most challenging part in a MCSCF calculation.

Complete Active Space SCF

The Complete Active Space SCF (CASSCF) method77,131,225,266 is a prominent approach

to optimize the choice of configurations in MCSCF. Instead of an individual choice of

SDs, a general class of configurations is chosen by partitioning the orbital space into three

subspaces. The core or inactive space consists of exclusively doubly occupied orbitals,

the virtual or secondary space are orbitals, which are always empty, and finally the

active space is the set of orbitals with variably occupancies 0, 1 and 2. The multi-

configurational space then consists of all SDs with doubly occupied core, empty virtuals

and all possible distribution of electrons in the active space. The Hamiltonian (1.6) is
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solved exactly in the space of these determinants, while orbital rotations between all spaces

are optimized, as depicted in Fig. 1.4.

C

A

V

e−κ̂ Ĥ |ΦMC〉

Fig. 1.4: Partitioning of the orbital
space into the doubly occupied core
(C), empty virtual (V) and variable
occupied active (A) space. Orbital
rotations e−κ̂ between all spaces are
optimized, but only the active space
is solved exactly.

Orbitals and wavefunctions optimized with the

CASSCF procedure prove to be excellent starting

points for more elaborate methods, as explained in

Sec. 1.7.2 and with applications given in 4.4.6, as the

important static correlation in the active space is

captured exactly. However, the reliance on an exact

solution, restricts this approach to rather small ac-

tive spaces, treatable with iterative ED solvers, such

as the Davidson procedure. It is however possible to

use more elaborate methods, such as the density ma-

trix renormalization group (DMRG), see Sec. 1.7.5,

or the FCIQMC method184 as the FCI solver, which

enables the treatment of far active spaces. Never-

theless, the choice of the active space requires a fair

amount of “chemical intuition” to correctly identify

the physically important orbitals and thus this ap-

proach is definitely not a “black-box” method.

1.7.2 Configuration Interaction

The configuration interaction (CI)291 approach approximates the eigenfunction |Ψ〉 of the

molecular Hamiltonian (1.6) as a linear expansion of a limited set of SDs {|DCI
i 〉}. This

set is obtained by considering excitations up to a certain level ntrunc from a given reference

state, usually the HF solution |ΦHF 〉. |ΨCI〉 is given by

|ΨCI〉 =
∑
k

cCIk |DCI
k 〉 =

(
1 +

∑
ia

cai a
†
aai +

∑
ijab

cabij a
†
aa
†
baiaj + · · ·

)
|ΦHF 〉 , (1.21)

where cCIk = {cai , cabij , . . . } are the expansion coefficients of single, double, . . . excitations

up to the chosen level of truncation ntrunc (spin index omitted for brevity). Figure 1.5

schematically shows examples of SDs of a CI expansion up to triple excitations based on

the HF determinant. The coefficients cCIk are determined by diagonalizing Ĥ, fully or

iteratively for the ground state, in this basis∑
l

〈DCI
k |Ĥ|DCI

l 〉cCIl = ECIc
CI
k . (1.22)

If the considered excitation level is lower than the maximum possible one, the CI method is

neither size-consistent nor size-extensive.13,317 Let’s briefly describe these two concepts:
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A method is size consistent if correctly describes the additive energy separation if a

system is split into two noninteracting subsystem, e.g. due to distance in dissociation

processes. Let AB = A + B be a super-system consisting of two separated subsystems

A and B, described by the Hamiltonians ĤAB = ĤA + ĤB and [ ĤA, ĤB ] = 0. The

total energy is additive separable, while the wavefunction of the total system |AB〉 is

multiplicative separable:

ĤAB |AB〉 =
(
ĤA + ĤB

)
|A〉 |B〉 = EA |A〉 |B〉+ EB |A〉 |B〉 = (EA + EB) |AB〉 . (1.23)

The CI method is not size-consistent,177 due to the linear wavefunction Ansatz in (1.21),

except if all levels of possible excitations are taken into account.73

A method is size extensive if it correctly describes the linear scaling of extensive prop-

erties, i.e. the energy, with the number of electrons. However, size-extensivity alone

does not ensure that a method correctly describes fragmentation of a super-system in

smaller subsystems, e.g. dissociation processes. Similar to dynamic and static correla-

tion, size-consistency and size-extensivity are not mutually exclusive properties. In the

interacting limit, size-extensivity is actually a necessary and sufficient condition for size-

consistency.13

|ΦHF 〉

k

j

i

a

b

c

|Φa
i 〉 |Φab

ij 〉 |Φabc
ijk〉

· · ·

Fig. 1.5: Schematic presentation of SDs con-
tained in a CI expansion up to triple ex-
citation from a RHF reference determinant.
Excitations are written in the form |Φa

i 〉 =

a†aai |ΦHF 〉 with the spin index omitted.

If the ground state solution is dominated

by a single state, usually the HF state, the

CI method can yield reasonably good re-

sults. Especially since lower orders of exci-

tations, specifically doubles∗, are the most

important. Additionally, the CI method

is systematically improvable by increasing

the maximum level of excitation ntrunc al-

lowed and applicable to large basis sets due

to favourable scaling, if only low orders of

excitations are considered, e.g. only sin-

gles and doubles (CISD). However, the CI

method shows a slow convergence, due to

difficulty in resolving the electronic cusp

condition.257

∗Since doubles are the only one interacting directly with the HF state, as the matrix element of singles
to the HF states is zero, due to Brillouin’s theorem, see Sec. 1.5
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Multi-Reference CI

Similar to the extension of the HF method to multi-configurational systems, via the

MCSCF method, see Sec. 1.7.1, the CI approach can be extended to the Multi-Reference

CI (MRCI) method.41 In the internally contracted formulation of MRCI, excitations

relative to a reference space, instead of just a single reference state∗, are considered and

|ΨMRCI〉 is given by

|ΨMRCI〉 =

(
1 +

∑
ia

cai a
†
aai +

∑
ijab

cabij a
†
aa
†
baiaj + · · ·

)∑
I

dI |DI〉 . (1.24)

A suitable choice of a reference space is the solution to a CASSCF calculation, see

Sec. 1.7.1. Similar to the CI method 1.7.2, MRCI suffers from the lack of size-consistency

and size-extensivity, but yields better correlation energies, due to the larger wavefunction

expansion. However, this comes with the price of a highly increased computational effort,

which can be ameliorated with internal contraction schemes.346

1.7.3 Perturbation Theory

Perturbation theory attempts to find approximate solutions of a problem based on the

exact solution of a related, but simpler problem. Conceptually the “hard” problem,

represented by Ĥ, is broken into an exactly solvable part Ĥ0, with known solutions

Ĥ0 |Φ(0)
n 〉 = E

(0)
n |Φ(0)

n 〉, and a perturbative correction Ĥ1:

Ĥ = H0 + λĤ1, (1.25)

with a parameter λ. This approach is known as time-independent Rayleigh-Schrödinger

perturbation theory262,278 in quantum chemistry, or just many-body perturbation theory

in the physics community. If Ĥ0 is chosen as the Fock operator (1.15) and Ĥ1 as the

difference of the true Coulomb interaction and the effective one-electron Fock potential

V̂eff

Ĥ0 = f̂ , H1 =
∑
i<j

r−1
ij − V̂eff = Ĥ − f̂ = Ĥ − Ĥ0 (1.26)

the approach is known as Møller-Plesset perturbation theory (MPPT)212 in quantum

chemistry.

If we formally express the energy and eigenstates of Ĥ in a power series in λ

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · , |Ψn〉 = |Φ(0)

n 〉+ λ |Φ(1)
n 〉+ λ2 |Φ(2)

n 〉+ · · · , (1.27)

∗Spin-index omitted for brevity.



19

with |Φ(0)
0 〉 = |ΦHF 〉, the first and second order energy corrections of the ground state can

be obtained as

E
(1)
0 = 〈Φ(0)

0 |Ĥ1|Φ(0)
0 〉 = 〈ΦHF |Ĥ1|ΦHF 〉 (1.28)

E
(2)
0 =

∑
n>0

|〈Φ(0)
n |Ĥ1|Φ(0)

0 〉|2

E
(0)
0 − E

(0)
n

= −
∑

a>b,i>j

|〈Φab
ij |Ĥ1|ΦHF 〉|2

εa + εb − εi − εj
, (1.29)

with εa + εb− εi− εj = E
(0)
0 −E

(0)
n being the energy difference between two eigenstates of

the Fock operator f̂ with |Φ(0)
n 〉 = |Φab

ij 〉 = a†aa
†
baiaj |ΦHF 〉 (spin index omitted for brevity).

It is worth noting that in the MPPT the sum of the zero and first order energy correction

equals the HF energy, EHF = 〈Φ(0)
0 |f̂ + V̂eff |Φ(0)

0 〉 = E
(0)
0 +E

(1)
0 . The second order energy

expression results form the first order wavefunction correction

|Φ(1)
n 〉 =

∑
k 6=n

〈Φ(0)
k |Ĥ1|Φ(0)

n 〉
E

(0)
n − E(0)

k

|Φ(0)
k 〉 . (1.30)

Since E
(0)
0 < E

(0)
k except for degenerate states, the second order energy correction (MP2)

always lowers the total energy. In the case of equal energies Eq. (1.29) will diverge.

However, it is possible to diagonalize the perturbation Ĥ1 in this degenerate subspace

and obtain a new basis in which these degeneracies are—hopefully—lifted.

If the initial guess Ĥ0 is already a good description of the composite system Ĥ, perturba-

tion theory is able to obtain very accurate results, since λ is actually a small parameter.

Additionally, due to the favourable scaling, energy corrections up to fourth172 (MP4) and

fifth order261 (MP5) are feasible and PT is size-consistent and size-extensive in any ex-

pansion order.109 Perturbation theory however is limited to single-reference systems with

weak correlation, since, if Ĥ0 is far from the exact description and no small parameter λ

can be found to expand the series (1.27), PT is bound to fail.

1.7.4 The Coupled Cluster Approach

In the Coupled Cluster (CC) method237,285,337,338 the ground state wavefunction of (1.4)

is expressed as an exponential Ansatz

|ΨCC〉 = eT̂ |Φ0〉 (1.31)

with |Φ0〉 being a reference function, usually the HF solution, and T̂ = T̂1 + T̂2 + . . . is

the cluster operator with single, double, . . . excitation operators, e.g. T̂1 =
∑

ia t
a
i a
†
iaa

(spin index omitted). To obtain the ground states energy E0 and amplitudes tai , t
ab
ij , . . .

the following set of nonlinear equations are solved

〈Φ0|e−T̂ Ĥ eT̂ |Φ0〉 = E0, 〈Φ∗|e−T̂ Ĥ eT̂ |Φ0〉 = 0, (1.32)
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with |Φ∗〉 being a certain excitation from the reference function (e.g. |Φa
i 〉 to obtain the

singles amplitude tai ). In contrast to the CI method the CC approach is inherently size-

consistent and size-extensive due to the exponential Ansatz (1.31), as it guarantees a

multiplicative separable wavefunction.

Considering all cluster operators in T̂ corresponds to the full solution in CC theory,

but is computationally not affordable, except for systems we can solve exactly anyway.

Truncating the cluster operator to only singles T̂1 and doubles T̂2 (CCSD) scales as n6,

with n being the number of spatial orbitals and is thus applicable for far larger systems.

Additionally, due to the exponential Ansatz, every truncated CC scheme still contains

contributions of all determinants of the system and it remains size-consistent.

Including triple excitations (CCSDT) already scales as n8, which gets prohibitively hard

for large systems. But it is possible to approximately include the effect of triples via

perturbative corrections (CCSD(T)), scaling as n7, with provides very accurate correlation

energies and is often stated as the gold standard of quantum chemistry. However, due to

the Ansatz (1.31) the CC method is an inherently single reference method and generalizing

it to the multi-reference case is a very nontrivial task. Because of that CC fails for systems

with strong static correlation and multiple equally important states in the ground state

solution.

1.7.5 Density Matrix Renormalization Group

The density matrix renormalization group (DMRG)354,355 approach is quite different from

the methods introduced up until now. Instead of the linear or exponential expansion in

Slater determinants, in DMRG the N -electron wavefunction is expanded as a matrix

product state (MPS)84,227,339

|ΨMPS〉 =
∑
{n}

Tr
[
A

(n1)
1 A

(n2)
2 . . . A

(nk)
N

]
|n1n2 . . . nk〉 , (1.33)

where A
(ni)
i are matrices of order M and |n1 . . . nk〉 is the occupation number representa-

tion of a Slater determinants with
∑n

i ni = N . Hence the coefficients in the expansion

are no usual c-numbers, but instead a correlated product of matrices. It is based on the

idea of separating a super-system AB into two subsystems A and B and expressing |Ψ〉
as a tensor product

|Ψ〉 =
∑
iA,jB

ΨiA,jB |i〉A |j〉B , (1.34)

where |i〉A and |j〉B are orthonormal product bases of A and B276 and coefficients ΨiA,jB .

The matrix dimension M of A
(ni)
i is truncated based on the eigenvalues ω of the reduced
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density matrix

ρ̂A = TrB |Ψ〉 〈Ψ| , (ρA)ik =
∑
jB

ΨiA,jBΨ∗kA,jB , (1.35)

where the trace runs over the degrees of freedom of system B. The eigenvectors of (1.35)

with an eigenvalue ω above a chosen threshold δ are used as basis function for system

A, limiting the used matrix dimension M . This procedure is performed iteratively by

“sweeping” over the super-system AB, separating it into variable sized subsystems A

and B, optimizing the description of the system contained in the bases |i〉A and |j〉B
across the boundary between A and B, until convergence is reached. This is equivalent

to variationally minimizing the energy

EDMRG =
〈ΨMPS|Ĥ|ΨMPS〉
〈ΨMPS |ΨMPS〉

= Tr ρ̂ Ĥ, (1.36)

in the space of matrix product states.277 DMRG is thus able to reduce the effective degrees

of freedom to the most important one by iteratively optimizing the matrices A
(ni)
i and

truncating the matrix dimension M by keeping only states with eigenvalues of the density

matrix ρ above a chosen threshold.

The success of the DMRG approach, especially in one-dimensional systems, comes from

the fact that the ground state of a local, gapped Hamiltonian in 1D is in the comparable

tiny Hilbert space sector with an area law of entanglement .127 This means the entan-

glement between subsystem A and B of super-system AB given by the von Neumann

entropy

SA = −Tr(ρA ln2 ρA) = SB = −Tr(ρB ln2 ρB) (1.37)

grows with the area of the surface separating system A and B and not with the volume. It

can be shown that due to the matrix structure of the coefficients in (1.33) MPS represent

a state following an area law of entanglement.80 However, the necessary size M of the

matrices A
(ni)
i in the expansion (1.33) grows exponentially with the von Neumann entropy

M ∼ eSA,B .

For 1D systems the area of the boundary between two subsystems is constant, independent

of the total system size, thus the necessary M is constant and this allows DMRG to

be applied to these systems for sizes unreachable with other methods. However, for

dimensions larger than one the area of the boundary grows with the total system size and

thus DMRG is not as readily applicable as in the 1D case. The exponential growth in the

necessary matrix dimension restricts it to smaller system sizes compared to the 1D case.

Additionally, since the concept of locality of correlation is an important ingredient in the

optimization of the basis states |i〉A and |j〉B across the boundary of A and B, DMRG is

not easily applicable for itinerant delocalized systems.
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1.7.6 Full Configuration Interaction

If all levels of excitations relative to a reference determinant, e.g. |ΦHF 〉, are taken into

account in the CI expansion (1.21), see Sec. 1.7.2, we speak of Full Configuration Inter-

action (FCI).164 FCI corresponds to the exact solution in a given single-particle basis. In

contrast to a truncated CI calculation, FCI is size-consistent and size-extensive,∗ as it

corresponds to the exact solution in a given basis set and is in addition invariant to any

rotation of the spin-orbital basis {φσk}.

It is the goal of almost every computational method to come as close as possible to the FCI

solution in a given basis set. The major drawback of FCI, however, is its extremely un-

favourable scaling, which is combinatorial in the number of spatial orbitals n and electrons

N , since the Hilbert space size, which is the number of possible determinants—without

any symmetry restrictions—, is given by all the possibilities to distribute N electrons in

2n orbitals

NSD =

(
2n

N

)
=

(2n)!

N !(2n−N)!
. (1.38)

Iterative procedures, like the Lanczos176 or Davidson63 method, to obtain the ground state

of Ĥ (1.6) in the FCI expansion are limited to n = N ≈ 18 − 20. The main bottleneck

in these iterative schemes is the memory requirement to store at least two vectors of

coefficients of the size of the Hilbert space. However, for system sizes in which the FCI

solution is achievable it provides very useful benchmark results, both in accuracy and

performance. By exploiting symmetries inherent to the system, mentioned in Sec. 1.3, it

is possible to reduce the Hilbert space size by factors of 10− 100, but the combinatorial

scaling remains.

The main computational method used and studied in this thesis, Full Configuration In-

teraction Quantum Monte Carlo (FCIQMC), attempts the FCI solution of a problem

in a given single-particle basis set. FCIQMC retains the benefits of size-consistency,

size-extensivity and orbital invariance of the FCI approach, while avoiding—or at least

ameliorating—the unfavourable exponential scaling by a stochastic sampling of the wave-

function, expanded in a finite set of antisymmetrised Slater determinants. In contrast

to other computational approaches it does not rely on perturbative techniques and thus

is not restricted to single-reference systems and, as it aims for the full orbital-invariant

FCI solution, there is no need for a deliberate choice of a chemical relevant active space.

Additionally, its formulation does neither rely on concepts of locality nor dimensionality

and thus it is also readily applicable to itinerant and multi-dimensional systems. The

FCIQMC method is explained in depth in Sec. 2.3, after a general introduction to the

stochastic Monte Carlo method in Sec. 2.

∗Although strictly speaking size-extensivity is something that is only achieved in the thermodynamic
limit.
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1.7.7 Explicitly Correlated Methods

It is possible to take the nondifferentiable cusp behaviour of the exact ground state wave-

function (1.18) at electron coalescence, mentioned in Sec. 1.6, directly into account in

the Ansatz for Ψ(r). This is achieved by employing correlating functions of the interelec-

tronic distance r12 = |r1 − r2| directly in the wavefunction Ansatz. Methods using this

approach are called explicitly correlated methods120,129,163,294 and important examples are

briefly discussed here. These methods are able to circumvent the slow convergence of

the electron correlation energy with the single-particle basis expansion size, due to the

poor description of the electron-electron cusp.145,146,296 According to Kato156 and Pack

and Byers229 the first-order singlet (S = 0) and triplet (S = 1) wavefunctions for two

electrons have the form175,294

|Ψ(1)
S=0〉 =

(
1 +

r12

2

)
|ΦHF (r12 = 0)〉+O(r2

12), |Ψ(1)
S=1〉 =

(
1 +

r12

4

)
r12 ·

∂ |ΦHF 〉
∂ r12

+O(r3
12)

(1.39)

near the coalescence r12 = 0. However, within a finite expansion of Slater determinants

based on conventional single-particle basis sets, these conditions (1.18, 1.39) cannot be

fulfilled. The first explicitly correlated method to account for the nondifferentiable be-

haviour (1.39) goes back to Hylleraas, who proposed the following form for a two-electron

wavefunction

|Ψ(r1, r2)〉 = e−ζ(r1+r2)
∑
lmn

(rl1r
m
2 + rm1 r

l
2)(r1 − r2)n. (1.40)

For N electrons, a general correlator of all pairs of N electrons

Ĉ =
N∏
i<j

f(ri, rj), or Ĝ =
N∑
i<j

f(ri, rj) (1.41)

with f(ri, rj) being suitable functions of the electron coordinates, can be used to express

the ground state as a fully correlated wavefunction

|Ψ〉 = Ĉ |Φ0〉 , or |Ψ〉 = eĜ |Φ0〉 (1.42)

with a suitable reference state |Φ0〉, usually the Hartree-Fock solution |ΦHF 〉. However

this introduces coupled integrals of 3N dimension, which restricts this approach to only

the smallest of systems.163

The transcorrelated approach by Boys and Handy,34–36 based on the work of Hirschfelder,138

instead uses the non-Hermitian similarity transformed —the so-called transcorrelated

—Hamiltonian

H̃ = Ĉ−1ĤĈ, or ˆ̄H = e−Ĝ Ĥ eĜ, (1.43)

which involves only integrals up to three electrons at most for ab-initio systems. Similar

concepts applied to lattice systems are the basis of our explicitly correlated approach to
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compress the information stored in the ground state wavefunction, which are explained

in detail in Chapter 5.

The R12 -method, introduced in the seminal work of Kutzelnigg,175 is a hybrid scheme,

which uses a conventional SD-based wavefunction expansions augmented by two-electron

basis functions. For a two-electron system the R12 wavefunction is expressed as∗

|Ψ〉 = (1 + λ Q̂12 r12) |ΦHF 〉+
∑
ijab

cabij |Φab
ij 〉 , with |Φab

ij 〉 = a†aa
†
baiaj |ΦHF 〉 , (1.44)

where λ and cabij are parameters to be optimized and Q̂12 is the strong orthogonality projec-

tor, which keeps r12 |ΦHF 〉 orthogonal to |ΦHF 〉 , |Φa
i 〉 and |Φab

ij 〉. Ten-no320,321 introduced a

modification of the R12-method, called F12 -method, by introducing the correlating func-

tion f(r12) = −γ−1 exp(−γr12), with γ to be optimized, instead of the linear f(r12) = r12

used in the R12-method (1.44).

The general correlation function Ĝ used in the transcorrelated method (1.41) is also

employed in the field of variational Monte Carlo (VMC) as the Jastrow factor ,148 where the

functions f(ri, rj) are optimized to variationally minimize the expectation value47,91

E(f) = min
f

〈Φ0|eĜ Ĥ eĜ|Φ0〉
〈Φ0|e2Ĝ|Φ0〉

. (1.45)

The VMC method will be explained in more detail in Sec. 2.2.1 and the use of Jastrow

factors and other correlators in Chapter 5.

∗Spin index omitted for brevity.
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The (Quantum) Monte Carlo Method

The Monte Carlo (MC) method∗ is a broad class of computational algorithms that utilize

randomness to solve problems of deterministic nature. It was invented by Ulam, von

Neumann and Metropolis during their work on the Manhattan project at the Los Alamos

National Laboratory.209 It has a wide applicability in problems of optimization, numerical

integration and random drawing from probability distributions173 in the fields of physics,

business, engineering and mathematics. Based on the law of large numbers the MC

method is applicable to any problem that has a probabilistic interpretation.

2.1 The Monte Carlo Method

The main idea of the MC method is to use random events and their outcome as a means to

study interesting phenomena and draw conclusions to solve problems, which may be too

difficult to solve deterministically. An illustrative example is the determination of π by

dropping random points on an unit square. Imagine a square and its inscribed quadrant,

as depicted in Fig. 2.1; if points ri = (xi, yi) are scattered at random over the square, the

ratio of points inside the quadrant with |ri| < 1 and the total distributed points will be

an estimate of the ratios of the two areas, which is π/4. This example illustrates the use

of random sampling to evaluate the definite integral153

π

4
=

∫ 1

0

∫ √1−x2

0

dxdy, (2.1)

∗The name actually refers to the famous casino in Monaco.205,208

0.0 0.5 1.0
0.0

0.5

1.0
N = 100

0.0 0.5 1.0

N = 500

0.0 0.5 1.0

N = 1000
Fig. 2.1: Example

of the estimation
of π by measur-
ing the ratio of
M randomly scat-
tered points inside
a unit quadrant and
the total number of
points.
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by Monte Carlo integration. The accuracy of the estimate of (2.1) depends on the number

of random points M and usually in MC calculations a large amount of data points are

necessary for a reasonable estimate. However, in contrast to deterministic integration

techniques that evaluate the integrand on a regular grid, MC integration does not suffer

from the curse of dimensionality17,258 for multidimensional integrals, as the integrand

is evaluated at randomly chosen points with a polynomial scaling computational cost

with the dimension of the problem. In a naive MC approach a multidimensional finite

integral

I =

∫
Ω

f(r)dr, with volume V =

∫
Ω

dr and Ω ⊂ Rm (2.2)

is evaluated at M independent, uniformly distributed, randomly chosen points

r1, r2, . . . , rM ∈ Ω. If the chosen ri are truly random and independent, f(ri) can be

interpreted as a random variable and its expected value can be estimated by the sample

mean of independent samples

I ≈ IM =
V

M

M∑
i

f(ri) = V 〈f〉 , with lim
M→∞

IM = I, (2.3)

due to the law of large numbers .18,292 According to the central limit theorem IM is

normally distributed so the variance of IM can be estimated by the sample mean of the

sample variance σ2
M

σ2
M =

1

M − 1

M∑
i

(f(ri)− 〈f〉)2 =
1

M − 1

M∑
i

(
f(ri)

2 − 2f(ri) 〈f〉+ 〈f〉2
)

= 〈f 2〉 − 〈f〉2 → Var(IM) =
V 2

M2

M∑
i

σ2
M = V 2σ

2
M

M
. (2.4)

Consequently the statistical error estimate of IM is given by the standard error of the

mean

δIM ≈
√

Var(IM) = V
σM√
M
, (2.5)

which decreases as M−1/2 with the number of samples. The strength of the MC approach

is that δIM does not depend on the dimensionality m of the integral, but just on the

number of samples M . So the cost of a MC integration to achieve a desired accuracy is

only determined by the cost to evaluated f(ri) at the randomly sampled points. Results

arbitrarily close to the exact one are obtainable by an increase of the number of sampled

points. The accuracy of deterministic methods on the other hand depend exponentially on

m, due to the evaluation of the integrand on a regular grid, leading to the aforementioned

curse of dimensionality.153
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2.1.1 Importance Sampling

An efficient modification of the basis MC scheme to decrease the variance of the estimate

IM is the concept of importance sampling .151 Instead of choosing the random sampling

points ri uniformly, they are drawn from a probability distribution p(r), with p(r) ≥ 0

and
∫

Ω
p(r)dr = 1, which in the optimal case mimics the integrand f(r) of Eq. (2.2). A

naive MC approach without some sort of importance sampling in general provides very

poor estimates with large variances. The idea is to draw more samples in the “important”

region of f(r) and thus increasing the efficiency and decreasing the variance of the MC

sampling. With ri ∈ Ω randomly drawn from p(r) the MC estimator for the integral (2.2)

is given by

IM =
1

M

M∑
i

f(ri)

p(ri)
, with the modified I =

∫
Ω

f(r)

p(r)
p(r)dr, (2.6)

where the “naive” approach is recovered for a constant p(ri) = 1/V . A simple example is

to choose normally distributed points ri for the integration of Gaussian function. In prac-

tice the choice of p(r) is a delicate one and depends on the problem at hand. Depending

on the form of p(r), drawing random samples from the distribution can be a challenging

task, since the normalization of p(r) might be difficult to calculate, which could cause

the MC approach to lose its favourable scaling, purely by the complicated sampling of

p(r).

2.1.2 Markov Chains and the Metropolis-Hastings Algorithm

A flexible and computationally cheap way to generate random samples ri according to

any probability distribution p(r) is achieved by constructing a Markov chain201 with a

stationary distribution π(r) equal to p(r) via the Metropolis-Hastings algorithm128,208 used

in Markov Chain Monte Carlo (MCMC) methods. A Markov chain is a series of events,

(x1, x2, . . . ) in which the probability of each subsequent event p(xi+1) only depends on

the current state xi but not on the previous events ∗. A Markov chain has an asymptotic

stationary distribution π(r), if the transition probability between two states p(r′|r) fulfils

the detailed balance condition267

π(r)p(r′|r) = π(r′)p(r|r′). (2.7)

π(r) is unique, if the Markov chain is ergodic, requiring aperiodicity (the same state ri is

not reached in fixed intervals) and that the number of steps for returning to the same state

is finite, for all states ri. The Metropolis-Hastings algorithm ensures the detailed balance

and ergodicity conditions and creates a Markov chain with the stationary distribution

∗This feature is often described as the “memorylessness” of a Markov chain
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π(r) = p(r). This is achieved by separating the transition probability into a proposal

probability g(r′|r) of a new state r′ given r and the acceptance probability A(r′|r) of this

new state

p(r′|r) = g(r′|r)A(r′|r). (2.8)

The choice of A(r′|r) by Metropolis208 is

A(r′|r) = min

(
1,
p(r′) g(r|r′)
p(r) g(r′|r)

)
(2.9)

to accept state r′ as a new state or otherwise retain r as the new state. The choice of

the acceptance probability (2.9) ensures the detailed balance condition with p(r) as the

stationary distribution of the Markov chain

p(r)p(r′|r) = p(r′)p(r|r′). (2.10)

Since only the ratio p(r′)/p(r) is necessary in the evaluation of Eq. (2.9) the possibly

complicated calculation of the normalization of p(r) is avoided and thus any probability

distribution can be sampled efficiently via the Metropolis-Hastings algorithm. However,

everything comes with a price and the drawbacks of the Metropolis algorithm are that the

stationary distribution only asymptotically reflects the targeted probability distribution

and successive samples from the Markov Chain are in general correlated. These “auto-

correlations” modify the statistical error to
√

2τA + 1δIM , with τA being the integrated

autocorrelation time.327 Thus, a careful equilibration and correlation length analysis

must be performed to ensure correct, statistically independent samples.153 In practice

this can be done by performing e.g. a blocking analysis92,157 on the possibly correlated

samples.

The computation of a multidimensional integral with the MCMC method is realized by

an ensemble of “walkers”∗ that perform a random walk in the m-dimensional space Ω.

The integrand is evaluated at each position the walkers reach and moves to new positions

are accepted according to Eq. (2.9) with a reasonable chosen proposal probability.

2.2 Bringing Quantum into Monte Carlo

The application of the MC method is by no means restricted to the evaluation of mul-

tidimensional integrals, simulating random walks and not even to the realm of classical

physics. The basic notion of using repeated sampling of randomly chosen events to obtain

statistical properties of a problem of interest can be readily applied to study systems

of quantum-mechanical nature and lead to a multitude of different flavours of quantum

∗A concept which will again be used in the Full Configuration Interaction Quantum Monte Carlo
method, see Sec. 2.3.
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Monte Carlo (QMC) methods. The application of a stochastic method to solve problems,

which are by the very foundation of physics of nondeterministic nature, actually seems

like a very natural combination.

As mentioned in Sec. 2.1 the cost of a MC simulation depends on the effort it takes to

evaluate the integrand in question. In quantum mechanics the N -body wavefunction Ψ(r)

contains every information needed to describe a physical state. Thus, MC approaches to

quantum systems, usually involve evaluation of Ψ(r) at randomly chosen points r, which

in general scales as O(N3), with N being the number of electrons of a system. This

favourable polynomial scaling is the great advantage of the QMC approach.

However, especially due to the antisymmetry property of fermions or geometric frustra-

tion, there are a few caveats. The fermion sign problem prohibits a general polynomially

scaling solution with the QMC approach applicable to all different sorts of quantum me-

chanical problems327 and creative and elegant solutions have to be found to circumvent

this for specific problems. The sign problem will be mentioned in the sections below and

discussed in more detail in Sec. 2.2.6.

2.2.1 The Variational Monte Carlo Method

The most obvious application of the MC approach to quantum mechanical problems is

the evaluation of the integral expression of the variational energy

Evar =
〈ΨT |Ĥ|ΨT 〉
〈ΨT |ΨT 〉

=

∫
Ψ∗T (r)ĤΨT (r)dr∫
|Ψ(r)|2dr

≥ E0, (2.11)

realised in the variational Monte Carlo (VMC) method49 for some trial wavefunction |ΨT 〉
and Ĥ being the nonrelativistic Hamiltonian in the Born-Oppenheimer approximation

(1.5) defined in Sec. 1.2 ∗. By defining the probability density p(r) and local energy E(r)

as

p(r) =
|ΨT (r)|2∫
|Ψ(r)|2dr

and E(r) = ΨT (r)−1ĤΨT (r), (2.12)

Eq. (2.11) can be expressed as

Evar =

∫
E(r)p(r)dr = 〈E(r)〉 ≥ E0. (2.13)

An estimate of Evar can be obtained by drawing independent values of ri sampled from

p(r), e.g. via the Metropolis-Hastings algorithm (see Sec. 2.1.2), and evaluation of the

local energy E(ri). However, the quality of Evar strongly depends on the chosen reference

function |ΨT (a)〉 that is chosen as a function of one or multiple variational parameter(s) a,

which are optimized to minimize Evar. The stochastic ingredient in VMC is the evaluation

∗Although in principle any Hamiltonian can be used.
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of the integral expression (2.11) via Monte Carlo integration. A popular Ansatz for the

trial wavefunction is to include a so-called Jastrow factor eτ̂ 49

|ΨT (u)〉 = eτ̂ |Φ0〉 = e
∑
i<j u(rij) |Φ0〉 , (2.14)

where |Φ0〉 is a mean-field solution, such as the Hartree-Fock state, and u(rij) is the to-

be-optimized function of the distance between pairs of particles. This Ansatz explicitly

accounts for two-particle correlations, see Sec. 1.7.7.

An advantage in the VMC approach is the great flexibility in the choice of the trial

wavefunction |ΨT 〉, however at the same time the quality of the obtained variational

energy is inherently constrained by its choice and the exact energy is only obtainable if

|ΨT 〉 = |Ψex〉. If fermionic particles are sampled the nodes |ΨT 〉 = 0 cause the local energy

(2.12) to diverge,48 but due to the positive definiteness of p(r) the famous fermion sign

problem, explained in Sec. 2.2.6 does not haunt the VMC approach.

2.2.2 The Projector Monte Carlo Method

A conceptually very different approach to the VMC method is the family of projector

Monte Carlo (PMC) methods. In contrast to the reliance on a sensible choice of a trial

wavefunction in the VMC approach, PMC methods aim to directly and exactly obtain

the lowest energy eigenstate(s) of a quantum-mechanical system, described by the Hamil-

tonian Ĥ. For small enough systems in a finite basis set the exact eigenfunctions of Ĥ can

be obtained deterministically by iterative procedures like the Power or Lanczos method

mentioned in Sec. 1.2. However, if the system becomes too big,∗ or we wish to obtain the

solution of the Schrödinger equation in continuous space ((1.2)) deterministic approaches

are bound to fail. On the other hand, stochastic implementations of the Power method

are able obtain solutions of problems of larger or even infinite size as the time-average of

random samples. The basic approach of the methods in the PMC family is the repeated

application of a projector P̂ (Ĥ,∆τ), which is a function of the Hamiltonian Ĥ of the

system, in discretised intervals ∆τ to filter out the ground state contribution from an

almost arbitrary starting state |ΨT 〉 in the asymptotic limit332,341

|Ψ0〉 = lim
n→∞

P̂ n(Ĥ,∆τ) |ΨT 〉 . (2.15)

Different flavours of PMC methods are based on various forms of P̂ . They are character-

ized by if |ΨT 〉 and |Ψ0〉 are expanded in a continuous or finite basis and if Ĥ is expressed

in first or second quantization.332 As long as PMC methods are applicable—i.e. the sys-

tem exhibits no sign problem—they are, in theory, able to yield the exact result within

∗The word “big” should be taken with a grain of salt, as already a few dozen of electrons can be too
“big”.
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arbitrary accuracy in the asymptotic limit; in other words they are numerically exact.

(As a side note, the power method is only applicable if the spectrum of Ĥ is bounded; a

restriction that will be fulfilled for all systems studied in this thesis.)

2.2.3 The Diffusion Monte Carlo Method

The Diffusion Monte Carlo (DMC) approach is a PMC method that is similar to the

Markov-chain Monte Carlo approach to solve definite integrals by random walks of par-

ticles or walkers. The equation to be solved in the DMC approach is the imaginary-time

Schrödinger equation

∂Ψ(r, τ)

∂ τ
= −ĤΨ(r, τ), with Ĥ = T̂ (r) + V̂ (r), (2.16)

with the substitution t→ iτ in Eq. (1.1) and the short handle T̂ (r) for the kinetic energy

term and V̂ (r) for the Coulomb potential in the ab-initio electronic Hamiltonian (1.5).∗

The similarity of Eq. (2.16) to the diffusion equation90 led Metropolis and Ulam209 to the

proposition to solve the differential equation (2.16) by an ensemble of walkers randomly

diffusing in a discretised time interval ∆τ according to the kinetic energy term ∇2
i and

multiplying or dying governed by the potential V (r)5 in the space of 3N coordinates of

N particles. Integration of Eq. (2.16) yields the iterative relation

Ψ(r, τ + ∆τ) = e−∆τ(Ĥ−ES(τ)) Ψ(r, τ), (2.17)

with an adaptive estimate for the ground state energy ES(τ). Consequently the projector

used in the DMC approach is

P̂ (Ĥ,∆τ) = e−∆τ(Ĥ−ES(τ)) = e−∆τ(T̂+V̂−ES(τ)) (2.18)

The short-time propagation is obtained via the convolution integral

Ψ(r, τ + ∆τ) =

∫
G(r, r′,∆τ)Ψ(r′, τ)dr′, (2.19)

which is evaluated by the random walks of the particles. The Green’s function

G(r, r′,∆τ) = (2π∆τ)−3N/2 exp

(
(r− r′)2

2∆τ

)
exp

(
−∆τ

2
(V (r) + V (r′)− 2ES(τ))

)
,

(2.20)

which is obtained via Trotter-Suzuki decomposition of e−∆τ(V̂+T̂ ) for small timesteps ∆τ

governs the dynamic of walkers and provides the probability to move from r to r′.

However, the transition probability between 〈r|P̂ |r〉 with Eq. (2.20) is always positive,

∗Of course other potentials can also be solved with the DMC method.
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which causes a naive DMC implementation to converge to a bosonic solution |Ψ0(r)〉 >
0,∀r, even for fermionic systems.∗

The Fixed-node Approximation

To sample fermionic systems with DMC the fixed-node approximation is applied, where

the nodal surface (|ΨT (r′)〉 = 0) of a trial wavefunction |ΨT (r)〉 is imposed on the sam-

pled wavefunction |Ψ(r, τ)〉. DMC then yields the best possible solution for the given

nodal structure, by obtaining the exact solution within each area enclosed by the nodal

surface subject to the boundary condition |ΨT (r)〉 = 0. However, similar to VMC the

quality of the estimated ground state energy then depends heavily on the form of the trial

wavefunction |ΨT (r)〉 or more concretely on the nodal surface thereof.

2.2.4 The Green’s Function Monte Carlo method

Similar to the DMC approach the Green’s function Monte Carlo (GFMC) method yields

the ground-sate solution of Ĥ by the repeated application of the “short-time” propaga-

tor152,341

P̂ (Ĥ,∆τ) =
1

1 + ∆τ(Ĥ − ES(τ̂))
, (2.21)

which converges to the ground state of Ĥ for ∆τ < (Emax − E0)−1.325 The iterative

equation for the ground state solution in GFMC is given by†

|Ψ(τ + ∆τ)〉 =
[
1−∆τ(Ĥ − ES(τ))

]
|Ψ(τ)〉 . (2.22)

The GFMC approach can be applied in the continuous space of 3N coordinates like DMC,

but the many-body wavefunction of interest can also be expanded in an appropriate finite

basis set

|Ψ(τ)〉 =
∑
i

ci(τ) |Ci〉 . (2.23)

In this finite basis the iterative relation (2.22) for the expansion coefficients ci(τ) is given

by

ci(τ + ∆τ) =
∑
j

G(i, j,∆τ)cj(τ), (2.24)

where the Green’s function G describes the propagation from the basis state i to j and is

given by

G(i, j,∆τ) = 〈Ci|1−∆τ(Ĥ − ES(τ))|Cj〉. (2.25)

The coefficients ci(τ) in the expansion (2.23) are assumed to be positive definite in order

to be interpreted as probability densities. This restriction makes the GFMC method not

applicable for fermionic systems. The concept of branching introduced by Trivedi and

∗As the bosonic energy is always lower than the fermionic one.332
†We will see this equation again as the basis of the FCIQMC approach.
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Ceperley324,325 avoids configurations with low weight and thus stabilized the exponen-

tially increasing variance in a naive GFMC implementation, which made it applicable to

quantum lattice problems.

2.2.5 Auxiliary Field Quantum Monte Carlo

The auxiliary-field quantum Monte Carlo (AFQMC) method20,48,376 is again a projector

MC method to obtain the ground state (2.15), based on the same projector

P̂ (Ĥ,∆τ) = exp(−∆τ(Ĥ − ES)) as the DMC approach. In contrast to DMC, AFQMC

works in second quantized representation and in a finite antisymmetrised Slater deter-

minant basis. As AFQMC calculations are extensively used as reference results for the

Hubbard model (1.12) in this work, see Sec. 5.5, the basics of it will be briefly sketched by

taking the example of the Hubbard Hamiltonian, although AFQMC is readily applicable

to realistic ab-initio models.1,312

The Hubbard Hamiltonian is the sum of the one-body kinetic energy operator T̂ and the

two-body, local, on-site Coulomb interaction V̂

Ĥ = T̂ + V̂ , with T̂ = −t
∑
〈i,j〉,σ

a†iσajσ and V̂ = U
∑
i

ni↑ni↓, (2.26)

as explained in Sec. 1.4. For small timesteps ∆τ the propagator P̂ used in AFQMC can

be approximated by the Trotter-Suzuki decomposition314,326

e−∆τĤ ≈ e−∆τT̂ e−∆τV̂ , (2.27)

without the energy shift ES for brevity. This approximation introduces the so-called

Trotter error dependent on the chosen ∆τ . Since T̂ is a one-body operator the exponential

of it can be thought of as an orbital rotation, similar as in the Hartree-Fock Ansatz in

Sec. 1.5.∗ The troublesome two-body operator V̂ can expressed in terms of one-body

operators via the so-called Hubbard-Stratonovich (HS) transformation,135,136,311 e.g. for

a single term in V̂

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑
xi=±1

1

2
eγxi(ni↑−ni↓), (2.28)

with the random auxiliary-field variables xi. The HS transformation thus replaces the

two-body interaction by one-body interactions, which can be thought of as replacing one

interacting system by many noninteracting ones in random external auxiliary fields.215 A

two-body operator that can be written as a sum of squares of one-body operators v̂i, like

∗However in this case this does not represent a unitary transformation, which causes the single-particle
orbitals to lose orthogonality in AFQMC.
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V̂ in (2.26), can be decomposed by the HS transformation215

V̂ =
1

2

∑
i

γiv̂
2
i → e−∆τγiv̂i/2 =

1√
2π

∫
e−x

2/2 ex
√
−∆τγiv̂i dx (2.29)

with the continuous auxiliary-field variable x, for every operator v̂i. If the collection of

all auxiliary-field variables for all operator is denoted as x and the one-body operator T̂

and the transformed two-body operator are combined into B̂(x), the projector used in

AFQMC can be expressed as

e−∆τĤ =

∫
B̂(x)p(x)dx, (2.30)

where p(x) is the probability density function (PDF) given by the multidimensional Gaus-

sian from the first term in the integral of (2.29). The ground-state solution is then obtained

by an iterative evaluation of

|Ψ(τ + ∆τ)〉 =

∫
dxp(x)B̂(x) |Ψ(τ)〉 , (2.31)

where the wavefunction is approximated by a finite ensemble of walkers, randomly prop-

agating in the space of Slater determinants

|Ψ(τ)〉 ≈
∑
i

ci(τ) |Φi(τ)〉 , (2.32)

governed by Eq. (2.31) and with assigned weight ci(τ). For a given walker on state |Φi(τ)〉,
an auxiliary-field configuration x is drawn from the PDF p(x), e.g. via the Metropolis-

Hastings algorithm (see Sec. 2.1.2), and the walker is then propagated to a new state

|Φi(τ + ∆τ)〉 = B̂(x) |Φi(τ)〉. Since B̂(x) is not a unitary transformation the states {Φi}
can lose their orthogonality and a possible reorthogonalization is necessary.

The sign problem in AFQMC and the constrained-path approximation

The sign problem for fermionic systems in AFQMC appears due to the fundamental

symmetry between the ground state |Ψ0〉 and its negative − |Ψ0〉.375 For any ensemble of

SDs {|Φ〉} there exists the symmetric {− |Φ〉}, which is an equivalent MC representation

of the ground-state |Ψ0〉. The boundary between these degenerate halves of the Slater

determinants space 〈Ψ0 |Φ〉 = 0 is in general unknown. The problem now is that, due to

the random walks, it can happen for a state to land on this boundary 〈Ψ0 |Φi(τ)〉 = 0 and

thus this state and every further propagation of it, does not contribute to the ground-state

solution any more, since

〈Ψ0 |Φi(τ)〉 = 0 ⇒ 〈Ψ0|e−n∆τĤ |Φi(τ)〉 = 0 for any n. (2.33)

However these walkers still get sampled in the AFQMC approach, since there is no knowl-
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edge of the position of this boundary in the random walk. Instead of providing information

on the ground state solution, these walkers produce noise in the MC simulation. With

increasing propagation time n∆τ , the chance for a walk to cross the boundary asymptot-

ically reaches one, thus the ground state signal gets lost and only noise remains.

There are systems, for which the crossing of this boundary is prohibited by symmetry.

The most prominent example is the repulsive Hubbard model at half-filling with no spin

polarization.137 In this case the repulsive model can be mapped to an attractive model

via a particle-hole transformation with 〈Ψ0 |Φi(τ)〉 > 0 for all i and τ . For the Hubbard

model off half-filling AFQMC exhibits a strong sign problem and for a general nonlocal

two-body operator—with the Coulomb repulsion of the molecular Hamiltonian as a prime

example—the constant γi in Eq. (2.29) will be negative, causing complex auxiliary field

variables with an even more severe fermionic phase problem.215

Similar to the fixed-node approximation in DMC, see Sec. 2.2.3, the constrained path

(CP) approximation53,83,372,373 and phase-free formulation376 avoids the sign/phase prob-

lem in AFQMC∗ by the introduction of a trial wavefunction |ΨT 〉. The random walkers

are restricted to paths where they always have a positive overlap with the chosen trial

wavefunction, 〈ΨT |Φi(τ)〉 > 0. Similar to DMC this introduces an error associated with

the quality of the trial wavefunction to the otherwise numerically exact AFQMC method.†

For systems without an inherent sign problem or where a suitable trial wavefunction can

be chosen for the CP and phase-free approximation, AFQMC yields excellent results for

the ground state energy and other observables of interest.

2.2.6 The Sign Problem in Quantum Monte Carlo

Although already mentioned in the sections above, corresponding to the specific meth-

ods, some general thoughts on the fermionic minus sign problem, inherent to all QMC

approaches, except in a few special cases, should be mentioned. The sign problem of

quantum Monte Carlo simulations of a system of fermions stems from the antisymmetry

property of fermionic wavefunctions and is encountered when an integral to-be-evaluated

by a MC method does not have a positive semi-definite measure.341 The calculation of

any expectation value of an operator Ô can be expressed as

〈Ô〉 =

∫
dr Ô(r)p(r)∫
dr p(r)

, (2.34)

where we want to interpret p(r) as a probability density function. However, for fermionic

systems, due to the sign change of the wavefunction under particle exchange p(r) can in

general not be chosen positive-definite—except in a few special cases—and thus not be

∗The resulting method is usually just called constrained path quantum Monte Carlo (CPQMC).
†Except the Trotter error associated with the finite timestep ∆τ , which, however, can be systematically

controlled.



36 2.2. Bringing Quantum into Monte Carlo

interpreted as a probability. A trick to circumvent this problem is to perform importance

sampling based on the modified “bosonic” PDF64

p̃(r) =
|p(r)|∫
dr |p(r)|

(2.35)

and regard the expected sign 〈ŝ〉 of p(r) as part of the expectation value

〈Ô〉 =

∫
dr Ô(r)sign[p(r)]p̃(r)∫
dr sign[p(r)]p̃(r)

=
〈Ôŝ〉
〈ŝ〉

, (2.36)

with ŝ being the sign operator, with 〈ŝ2〉 = 1. However it is not certain if importance

sampling based on the modified bosonic PDF (2.35) captures the correct fermionic physics

described by the original p(r). Eq. (2.36) allows MC integration with importance sampling

to be applied and if the average sign 〈ŝ〉 is close to unity, p̃(r) in general is a good estimate

of the true p(r). However, sampling according to p̃(r) breaks down if the average sign

vanishes with 〈ŝ〉 = ε� 1 with a large variance σ2
s ≈ 1 causing the relative error

δŝ

〈ŝ〉
=

√
(〈ŝ2〉 − 〈ŝ〉2)/M

〈ŝ〉
=

√
1− 〈ŝ〉2
√
M 〈ŝ〉

≈ 1√
Mε

(2.37)

to diverge. This causes large cancellations and statistical fluctuations with large variance

in both the numerator and denominator of Eq. (2.36), making an accurate sampling of

〈Ô〉 impossible in practice.341

In addition, according to Troyer and Wiese327 the value of the sign operator 〈ŝ〉 for a

general quantum mechanical system is given by the ratio of the fermionic Zf and bosonic

Zb partition functions

〈ŝ〉 =
Zf
Zb

=

∫
dr p(r)∫
dr |p(r)|

, (2.38)

with Zf and Zb given by exponentials of the corresponding free energies ff and fb, particle

number N and inverse temperature β, Zf/b ∼ exp(−Nβff/b). This causes Eq. (2.37) to

scale exponentially with N and β

δŝ

〈ŝ〉
≈ eNβ∆f

√
M

, (2.39)

with ∆f = ff − fb > 0, as the difference of the corresponding fermionic and bosonic free

energies. As a consequence the number of necessary measurements M for a desired accu-

racy of 〈ŝ〉 scales exponentially with particle number and inverse temperature. Hence, for

systems with a severe sign problem the favourable polynomial scaling of the MC method is

lost. Although there are elegant ways to circumvent the fermionic sign problem for specific

systems, there is no single general solution of it applicable to all fermionic systems. This

was proven by Troyer and Wiese, who have shown that the general solution of the minus
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sign problem falls in the class of nondeterministic polynomial complete decision problems

(NP-complete).59 This implies that a general solution of the fermion sign problem in

polynomial time would answer one of the millennium problems: NP
?
= P.58∗

2.3 The Full Configuration Interaction Quantum Monte

Carlo Method (FCIQMC)

The main computational method developed, used and studied in this thesis is Full Con-

figuration Interaction Quantum Monte Carlo (FCIQMC). It attempts the exact solution

of a problem in a given single-particle basis set, by an efficient sampling of a stochas-

tic representation of the wavefunction—expanded in a discrete antisymmetrised basis of

Slater determinants—through the random walk of particles, governed by the Schrödinger

equation. FCIQMC retains the benefits of size-consistency, size-extensivity and orbital in-

variance of the FCI approach, while avoiding—or at least ameliorating—the unfavourable

exponential scaling by relying on the MC approach. In contrast to other computational

approaches it does not rely on perturbative techniques and thus is not restricted to single-

reference systems and, as it aims for the full orbital-invariant FCI solution, there is no

need for a deliberate choice of a chemical relevant active space. Additionally, its formu-

lation does neither rely on concepts of locality nor dimensionality and thus it is readily

applicable to itinerant and multi-dimensional systems. Opposed to other QMC methods

it does not rely on the use of a suitable trial wavefunction, as its formulation in the anti-

symmetric space of Slater determinants ensures the convergence to the correct fermionic

solution. In FCIQMC, the renowned fermion sign problem, haunting QMC approaches

in general, is recast to the problem of finding the correct relative sign structure of the

antisymmetric basis states in the exponentially scaling Hilbert space.

With all being said, FCIQMC provides a straightforward employment of the stochastic

Monte Carlo method to the quantum chemical problem in a very “black-box” manner, as

its application only needs the provision of the molecular one- and two-body integrals. At

the same time it is equally readily applicable to effective quantum lattice model, such as

the Hubbard model, and thus it can be described as being system-agnostic.

2.3.1 Derivation of FCIQMC

The Full Configuration Interaction Quantum Monte-Carlo (FCIQMC) approach30,56 is

a projector Monte Carlo method, based on the imaginary-time Schrödinger equation

(1.1)
∂

∂ τ
Ψ(r, τ) = −ĤΨ(r, τ) (2.40)

∗Which is in general believed to be not true.
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with τ = it in atomic units. To avoid the dependence on the N continuous space variables

r, the wavefunction Ψ(r, τ) is expanded in a finite basis of Slater determinants

|Ψ(τ)〉 =
∑
i

ci(τ) |Di〉 . (2.41)

By formal integration of Eq. (2.40) the imaginary-time evolution of the system is given

by

|Ψ(τ)〉 = e−τĤ |Ψ(τ = 0)〉 (2.42)

and for small timesteps ∆τ the iterative relation

|Ψ(τ + ∆τ)〉 = e−∆τĤ |Ψ(τ)〉 (2.43)

holds. If |Ψ(τ = 0)〉 is expressed in the eigenfunctions |φi〉 of Ĥ, with Ĥ |φi〉 = Ei |φi〉
and the Hamiltonian is shifted by the yet to be determined ground state energy E0, with

E0 ≤ Ei, ∀i, we obtain

|Ψ(τ = 0)〉 =
∑
i

di |φi〉 → |Ψ(τ)〉 =
∑
i

di e
−τ(Ĥ−E0) |φi〉 =

∑
i

di e
−τ(Ei−E0) |φi〉 .

(2.44)

It is obvious that the components of all states |φi〉 with Ei > E0 in Eq. (2.44) decay

exponentially with τ . Consequently, the ground state wavefunction can be obtained in

the long time limit

|Ψ0〉 = lim
τ→∞

e−τ(Ĥ−E0) |Φ〉 , (2.45)

with an arbitrary initial state |Φ〉 with 〈Ψ0 |Φ〉 6= 0, as all excited state contributions with

Ei > E0 are exponentially suppressed. If the unknown E0 is replaced with a dynamically

adapted energy shift ES(τ), the coefficient of the ground state contribution |φ0〉 in (2.44)

stays constant as long as ES(τ) = E0. While for ES(τ) < E0, d0 will decay and for

ES(τ) > E0 grow exponentially. This is a consequence of the fact that Eq. (2.42) describes

a nonunitary time evolution, due to the replacement τ = it, where the norm of |Ψ(τ)〉 is

not conserved. However, the observation above suggests, that if ES(τ) is adapted to keep

the norm of |Ψ(τ)〉 constant, ES(τ) will converge to E0 in the long-time limit, if |Ψ(τ)〉
is a stationary solution of (2.42).

For small timesteps ∆τ the projector e−τ(Ĥ−ES(τ)) can be approximated by the first-order

Taylor expansion and repeated application thereof

|Ψ0〉 = lim
n→∞

|Ψ(n∆τ)〉 = lim
n→∞

[
1−∆τ

(
Ĥ − ES(τ)

)]n
|Φ〉 , (2.46)

also yields |Ψ0〉 for ∆τ < 1/EW ,325 with EW = Emax−E0 being the spectral width of Ĥ.∗

FCIQMC stochastically samples Eq. (2.46) in the FCI basis of Slater determinants and

∗Note the similarity of the GFMC, see Sec. 2.2.4 and FCIQMC formulation presented here.
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obtains a stochastic representation of the FCI wavefunction. However, the full wavefunc-

tion is never completely stored, but only sufficiently dynamically sampled to obtain an

energy estimate of the ground state energy 〈E0〉.∗ It does so by introducing the concept of

so called “walkers”, which are positive or negative entities occupying the antisymmetrised

SDs of the FCI Hilbert space, introduced in Sec. 1.7.2 an shown in Fig. 1.5. To avoid

the memory bottleneck, due to the exponential scaling FCI Hilbert space size, only states

|Di〉 occupied by at least one walker Ni > 1 in (2.41) are kept in the simulation.† If the

total number of these walkers N tot
w is restricted, the maximal memory requirement can be

directly controlled. This is achieved by dynamically adapting the shift energy ES(τ) in

the following way30

ES(τ) = ES(τ − A∆τ)− B

A∆τ
ln

(
Nw(τ)

Nw(τ − A∆τ)

)
, (2.47)

where B is a damping parameter, A a predefined number of iteration steps between shift

updates and Nw(τ) the current and Nw(τ −A∆τ) the walker population A iterations ago.

The form of the shift adaptation (2.47) ensure ES(τ) does not vary too rapidly, as this can

introduce biases in other energy estimators,333 discussed in Sec. 2.3.4. Adapting ES(τ)

ensures that the L1 norm of the wavefunction (2.41), where the coefficients ci ∝ Ni, are

represented by the number of walkers on each state |Di〉, is kept constant. As mentioned

above, this ensures ES(τ) → E0 if Ψ(τ) approaches the stationary ground state (in a

stochastic sense).

The formulation in the total antisymmetric space of Slater determinants ensures that a

FCIQMC simulation does not converge to the incorrect “bosonic” solution. However,

the NP-complete327 fermionic sign problem is recast to the task of finding the correct

relative sign structure of the basis states of the exponentially scaling Hilbert space in

FCIQMC. The N tot
w signed walkers follow certain dynamics, which are governed by the

working equation for each expansion coefficient ci(τ) of (2.41)

ci(τ + ∆τ) = (1−∆τ (Hii − ES(τ))) ci(τ)−∆τ
∑
j 6=i

Hijcj(τ). (2.48)

2.3.2 The Three Ingredients to FCIQMC

Three main algorithmic steps result from Eq. (2.48), which are sampled in a stochastic

manner:

Walker death:

The diagonal term in Eq. (2.48) is stochastically realized by the possibility that a walker

∗In principle the expectation value of any operator can be sampled to arbitrary accuracy,310 see
Sec. 2.3.5.
†This is sometimes called the stochastic “snapshot” of |Ψ(τ)〉.
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on state |Di〉 dies∗ with the probability

pd = ∆τ |Hii − ES(τ)|, if Hii − ES(τ) > 0. (2.49)

If pd > 1 there is a chance the walker “overdies”, meaning it creates a new walker on |Di〉
with opposite sign. This fact is detrimental to the stability of the simulation and thus

additional to the restriction ∆τ < 1/EW , the timestep ∆τ should be chosen to restrict

pd ≤ 2 at least. In an actual calculation this is realized by adapting ∆τ(τ) dynamically

to ensure ∆τ(τ)|Hii−ES(τ)| ≤ 2. The topic of dynamic timestep adaptation is explained

more detailed in Sec. 2.3.7. If the quantity Hii − ES(τ) < 0 the walker actually has the

possibility to “give birth” to a new walker on the same state with the probability pd. This

is especially useful in the early stages of a simulation, which is generally started with a

few walkers on the initial reference determinant, to allow to grow the number of walkers

to the chosen N tot
w .

The Spawning event:

The off-diagonal term in Eq. (2.48) is given by the sum ∆τ
∑

j 6=iHijcj(τ). This sum is

sampled stochastically by allowing each walker on a given state |Di〉 to create or spawn

a new walker on a state |Dj〉 connected by the Hamiltonian matrix element Hij. Since

there are many possible connected states {Dk} we have to assign a definite probability

p(j|i) to the choice of state |Dj〉 given |Di〉 to sample the sum correctly. The probability of

choosing state |Dj〉 given |Di〉, or in other words generating the excitation (i→ j) is called

the generation probability. Furthermore it is very beneficial for the efficiency to sample

large matrix elements Hij more often than smaller ones. In other words p(j|i) should

be proportional to |Hij|. This makes the spawning step and the excitation generation

of the FCIQMC method the most challenging conceptually and most time consuming

computationally and is explained in more detail in Sec. 2.3.8 and its relation to the

timestep adaptation in Sec. 2.3.7. The final probability of spawning a new walker to |Dj〉
from a walker on |Di〉 is given by

ps = ∆τ
|Hij|
p(j|i)

. (2.50)

The sign of the new walker on |Dj〉 is given by −sgn(Hij) · sgn(Ni). Which leads us to

the final ingredient of the FCIQMC algorithm.

The annihilation step:

At the end of an iteration, after all the spawning events from all walkers on all occupied

determinants, walkers with opposite sign can end up on the same state. To converge to the

correct fermionic solution of the molecular Hamiltonian (1.6),309 walkers of opposite sign

∗A harsh formulation for the rather mundane fact, that this walker gets removed from the simulation.
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cancel—or more dramatically annihilate—each other and are removed from the simula-

tion. In contrast to the death and spawning steps, which are both embarrassingly parallel,

the annihilation step needs communication between the different computing cores if the

FCIQMC method is performed in parallel. However, this can be highly optimised and

currently our implementation of FCIQMC in the NECI code25 formally scales linearly with

the number of walkers Nw.29 Work on an optimized parallel implementation in collabo-

ration with F. Merz and M. Rampp from the Max Planck Computing and Data Facility

(MPCDF) is in progress to scale efficiently up to 105 computing cores.∗ Determinants,

which are no longer occupied by any walker, due to either death or annihilation events

are not stored in the stochastic representation of |Ψ(τ)〉. The three algorithmic steps are

visualized in Fig. 2.2.

The original FCIQMC implementation30 shows a very characteristic behaviour in the

growth phase of walkers. If the shift is held constant and the walker number is allowed

to increase and walkers explore the available Hilbert space through spawning processes,

there is a steep initial exponential growth, due to the effect of the projector e−τĤ . How-

ever, without any external influence, the growth comes to an end by itself, as more and

more opposite signed walkers occupy the same states, due to incoherent spawning events,

leading to an explosion of annihilation events. In this phase—termed the annihilation

plateau—death, spawning and annihilation events almost exactly cancel each other and

the total walker population stays constant. In this phase the correct sign structure of

the sampled ground state wavefunction |Ψ(τ)〉 is resolved. After this process is finished,

|Ψ(τ)〉 resembles the stationary solution of Ĥ and the further spawning events all happen

in a coherent fashion, leading to a second growth phase, which, unless the shift is adapted

to control the walker number, would go on forever. This behaviour is shown in Fig. 2.3

with the descriptors “non-init.”, which will be explained further in Sec. 2.3.3.

The height of this annihilation plateau Na, which varies from problem to problem, de-

termines how difficult it is for FCIQMC to obtain correct energy estimates. For some

systems it is only a tiny fraction of the Hilbert space size NSD,30 while for others it can be

of the same order of magnitude. If Nw > Na can be sampled, FCIQMC yields the exact

FCI energy. However, if Nw > Na is not feasible, due to computational limitations, the

original FCIQMC method is not applicable to these systems.

2.3.3 The Initiator Approximation

To simulate systems with a very high Na, the initiator approximation56 to FCIQMC (i-

FCIQMC) was introduced. The annihilation plateau can be seen as a consequence of an

incoherent growth of walkers, due to an incorrect sign structure of |Ψ(τ)〉 in the early

stages of a FCIQMC simulation. i-FCIQMC ensures a coherent growth of walkers, by

∗Almost optimal scaling up to 104 cores is already provided with the current implementation.
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Ψ(τ)
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(b) ∆τ |Hll|
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(a) ∆τ |Ĥij |

−∆τĤ

Ψ(τ + ∆τ)

Figure 2.2: Schematic representation of the algorithmic steps in the FCIQMC method.
Ψ(τ) is propagated by the increment ∆τ via the application of ∆τ(1 − Ĥ) to obtain
Ψ(τ + ∆τ). The diagonal term 1 is omitted in the figure for brevity. Only an instan-
taneous representation of Ψ0 is stored, which is indicated by the dashed circles of the
unoccupied state Dk at time τ . States can be occupied by walkers with a positive (red)
of negative sign (blue circles). The off-diagonal elements Ĥij induce spawning events (a)
with a probability proportional to ∆τ |Hij | and the sign of the new walker related to the
sign of Hij . The diagonal terms of Ĥ cause death/birth events (b) with a probability
proportional to ∆τ |Hii|. If walkers with opposite sign occupy the same state, due to
spawning events they are annihilated (c) and removed from the simulation. States which
are no longer occupied by any walker (due to death or annihilation) are no longer stored,
indicated by the dashed circle at time τ + ∆τ .

only allowing walkers from certain states {Dinit
i } with a walker population above a cho-

sen threshold ninit to spawn new walkers on unoccupied determinants. States satisfying

this condition are called initiators. The reasoning behind this is, that if a determinant

is occupied by at least ninit walkers the sign of it should be correctly sampled already,

thus spawns from this state are likely to be coherent with the overall sign structure of

|Ψ(τ)〉. Thus, the initiator approximation corresponds to a dynamic truncation of certain

Hamiltonian matrix elements 〈Di|Ĥ|Dj〉 depending on the occupation of the involved de-

terminants. The initiator approximation introduces an uncontrolled error in the FCIQMC

method and since it is a projector method and thus not variational, a careful study of

energy estimates obtained with i-FCIQMC has to be performed. This can be done by

comparing results obtained with an increasing number of total walkers and ensuring the

energy is converged, since in the limit of infinite Nw every state will fulfil Ni > ninit and

i-FCIQMC is equivalent to the original implementation.

The growth phase of the original and i-FCIQMC implementation are quite different.

Due to the restriction of spawning, the growth of walkers is less steep, although still

exponential, and there is no annihilation plateau phase in i-FCIQMC, as can be seen in

Fig. 2.3 (non-init. corresponds to the original and init. to the i-FCIQMC method).
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2.3.4 Energy Estimators

As already mentioned, if the shift energy ES(τ) is dynamically adapted to keep the walker

population constant and if |Ψ(τ)〉 is a good estimate of the ground state, ES(τ) is a good

estimate of the ground state energy E0. The most obvious way to obtain an energy

estimate would be to sample the expectation value

E(τ) =
〈Ψ(τ)|Ĥ|Ψ(τ)〉
〈Ψ(τ) |Ψ(τ)〉

(2.51)

each iteration for the current instantaneous wavefunction |Ψ(τ)〉. Although, apart from

the huge computational effort, this estimator is biased in the denominator21 and converges

more slowly to the exact result as comparable non-variational estimators.28 In addition

to the adapted shift energy ES(τ), the projected energy

EP (τ) =
〈Dref |Ĥ|Ψ(τ)〉
〈Dref |Ψ(τ)〉

≈ E0, if |Ψ(τ)〉 ≈ |Ψ0〉 , with Ĥ |Ψ0〉 = E0 |Ψ0〉 , (2.52)

with |Dref〉 being the most occupied determinant in a simulation, is an estimate for the

ground-state energy E0. Essentially any state could be chosen as the reference state

|Dref〉, but since repeated samples of EP (τ) yield a stochastic estimate of the energy,

maximizing the denominator of (2.52) will stabilize the results and minimize stochastic

fluctuations. Since Ĥ contains at most two-body operators∗ only double excitations of

|Dref〉 will contribute directly to EP (τ). Due to possible correlations, the numerator and

denominator of Eq. (2.52) should be averaged separately. It is worth noting that neither

the shift energy, due to the projective nature of FCIQMC, nor the projected energy, as

it does not correspond to the expectation value of Ĥ, 〈Ψ(τ)|Ĥ|Ψ(τ)〉†, are variational.

Due to the stochastic nature of these estimators, an error analysis with the blocking

algorithm92,157 is performed on data points obtained after convergence is ensured and an

equilibration time is carefully chosen to obtain the final energy estimates.

The projected energy, and FCIQMC in general, provides good estimates for systems dom-

inated by a single configuration, usually the HF result, as the remaining small fraction

of correlation energy can be obtained rather easily. However, opposed to other compu-

tational approaches, (CC 1.7.4, MPPT 1.7.3), FCIQMC is not inherently constrained to

these single-reference systems.

Figure 2.3 shows an exemplary FCIQMC calculation with both the original and initiator

approximated version for the neon atom in an aug-cc-pVDZ basis set. The top panel

shows the total walker number and reference occupation as a function of imaginary-time

τ with the maximum walker number N tot
w = 106. The original (non-init.) simulation

∗Except in the similarity transformed Hamiltonian introduced in Chapter 5.
†Which would be far to costly to calculate directly, but a variational estimator can be obtained via

the density matrices, see Sec. 2.3.5
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shows the characteristic annihilation plateau phase between 5 < τ < 40. The i-FCIQMC

calculation, on the other hand, does not exhibit this behaviour, but rather has a constant

exponential growth of walkers until N tot
w = 106 is reached. Attention to the different

reference occupations Nref after the shift is adapted should be given. As the i-FCIQMC

method restricts the occupation of determinants far out in the Hilbert space relative to

|Dref〉, N init
ref is higher than the unrestrictive original implementation. The bottom panel

shows the estimated correlation energy obtained via ES(τ) and EP (τ) for both imple-

mentations, compared to the exact FCI result Eex
corr obtained with Molpro.164,167,349,350

ES(τ) is initially zero until Nw reaches N tot
w , upon which it is adapted to keep Nw ≈ N tot

w

constant and converges to the correct Eex
corr result. The projected energy agrees well with

Eex
corr already at the early stage of the calculations. Additionally it shows less statisti-

cal fluctuations—which is in general the case—than ES(τ), due to the large reference

population.

It should be noted ES(τ) is a population wide energy estimator, since it depends on the

total number of walkers. Whereas EP (τ) is more local in character, as it is only directly

determined by the reference population and up to double excitations thereof.

The Trial-space Energy

The concept the projected energy estimator can be extended for systems, which show

a strong multi-reference character. This is achieved by calculating the projected energy

not by projection on a single reference state, but onto a space of NT determinants {DT
i },

called the trial-space, with

ET (τ) =
〈ΦT |Ĥ|Ψ(τ)〉
〈ΦT |Ψ(τ)〉

, with |ΦT 〉 =

NT∑
i

cTi |DT
i 〉 , (2.53)

where the coefficients cTi are obtained by diagonalizing Ĥ in the space spanned by {DT
i }.

Here the semi-stochastic FCIQMC variation23,248 is worth mentioning. In this approach

a part of the Hilbert space, deemed to be of major importance, {DSS
i } is propagated de-

terministically by diagonalizing Ĥ exactly in this space. This space can consist e.g. of the

HF determinant and single and double excitations thereof or just taking the NSS most oc-

cupied states after the variable shift mode is entered. This mixed deterministic-stochastic

approach—hence the name semi-stochastic—proves to greatly increase the accuracy of the

FCIQMC method, as shown in the papers mentioned above. This same deterministic ap-

proach is used for the calculation of the trial-space energy, by diagonalizing Ĥ in the space

spanned by {DT
i } to obtain E

(0)
T . The total trial-space energy is ET (τ) = E

(0)
T +E

(1)
T , with

E
(1)
T being the contributions of |Ψ(τ)〉 outside the trial-space, but with a non-vanishing

overlap 〈ΦT |Ĥ|Ψ(τ)〉.
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Figure 2.3: The walker dynamics and energy estimators of a non-initiator and i-FCIQMC
calculation for the Ne atom in an aug-cc-pVDZ basis set. The top panel shows the total
number of walkers and the reference occupation vs. imaginary time. The non-initiator
walker number shows the characteristic annihilation plateau phase at 5 < τ < 40 with
a constant walker population albeit constant shift ES(τ). The bottom panel shows the
projected, EP (τ), and shift, ES(τ), energy estimators as a function of imaginary time.
After the target number of walkers Nw = 106 is reached ES(τ) is adapted to keep Nw

constant and fluctuates around the exact Eex. The molecular integral files and exact
result were obtained with Molpro164,349,350

.
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2.3.5 Stochastic Sampling of Density Matrices

The expectation value of any static one- or two-body operator Q̂ can be obtained via the

one- (1-RDM) and two-body reduced density matrices (2-RDM), defined as (spin index

omitted)

γpq = 〈Ψ0|a†paq|Ψ0〉, Γpq,rs = 〈Ψ0|a†pa†qasar|Ψ0〉, (2.54)

as the trace of

〈Q̂〉 = Tr
[
ΓQ̂
]
. (2.55)

The density matrices (2.54) can be obtained with the stochastically sampled FCIQMC

wavefunction |Ψ(τ)〉228

γpq =
∑
ij

cicj〈Di|a†paq|Dj〉, Γpq,rs =
∑
ij

cicj〈Di|a†pa†qasar|Dj〉, (2.56)

by storing the product of coefficients during an excitation process |Di〉 → |Dj〉 represented

by the instantaneous walker populations Ni and Nj of the involved states. However,

since Ni is only a stochastic representation of the “correct” coefficient ci with an error

Ni = ci + δci, the statistical error of the diagonal terms of (2.54) are biased, due to

the always positive (δci)
2. To correct for this bias, the replica version of FCIQMC was

developed,228 where two or more independent equivalent simulations∗ are ran in parallel

and the diagonal contributions to (2.54) are computed from the individual calculations a

and b. This removes the positive bias, since N
(a)
i N

(b)
i = c2

i + ci(δc
(a)
i + δc

(b)
i ) + δc

(a)
i δc

(b)
i

and the statistical errors of the independent simulations cancel on average. The energy

obtained via the RDMs

ERDM =
∑
pq

tpqγpq +
∑

p>q,r>s

Γpq,rsVpqrd (2.57)

is a variational estimate for the ground state energy, ERDM ≥ E0.

2.3.6 Excited States within FCIQMC

With the replica method, mentioned in Sec. 2.3.5, it is also possible to calculate excited

states with the FCIQMC method.22 By running n parallel simulations the n-th excited

state, |Ψn(τ)〉, is sampled in FCIQMC by modifying the ground state time-evolution

(2.46)

|Ψn(τ + ∆τ)〉 = P̂n(τ + ∆τ)
[
1−∆τ

(
Ĥ − E(n)

S (τ)
)]
|Ψn(τ)〉 (2.58)

∗With different seeds for the random number generator of course.
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with E
(n)
S being the energy shift associated with state n and

P̂n(τ) = 1−
∑
m<n

|Ψm(τ)〉 〈Ψm(τ)|
〈Ψm(τ) |Ψm(τ)〉

, Em < En, (2.59)

being the Gram-Schmidt projector,55 which removes all contributions of lower lying states

|Ψm〉 and orthogonalises |Ψn〉 to each state with Em < En. This orthogonalization is per-

formed at the end of each iteration step, after the annihilation step, where the calculated

overlaps with lower energy states are removed from the higher energy ones. The elimina-

tion of the lower energy contribution causes |Ψn(τ)〉 to converge to the next lowest energy

eigenstate of Ĥ.

2.3.7 Automated Timestep Optimization

There are various consideration to take into account in the choice of the timestep ∆τ

used in a FCIQMC calculation. As mentioned in Sec. 2.3.1 for the first-order Taylor

expansion of the projector e−∆τĤ to correctly converge to the ground state, the timestep

∆τ must be smaller then the inverse of the spectral width of Ĥ.325 However, this is a

rather lax condition and the actual timestep usually must be chosen smaller to ensure

stable dynamics of a simulation.

The death-step, see Sec. 2.3.2, places the additional restriction that ∆τ should be chosen

in such a way to ensure that the probability for a walker to die (2.49) is smaller than

2, pd < 2. Otherwise a walker on a given state would continually create more and more

walkers of alternating sign in each iteration and causing an unstable simulation. To avoid

this situation it is possible to keep track of the largest diagonal element |Hii − ES(τ)| of

all walkers and adapt ∆τ dynamically to ensure pd < 2. In the end this is in general also

not the most limiting constraint on the possible timestep ∆τ .

The spawning event, see Sec. 2.3.2, especially in the initiator approximation of FCIQMC,

will be the deciding limitation of the maximum possible ∆τ . A spawning probability

ps > 1 is realized by spawning at least bpsc walkers and one walker with probability

ps − bpsc.∗ If the number of spawned walkers exceeds ninit, this would cause a possibly

unoccupied state to become an initiator immediately. This could be valid, due to a

large Hamiltonian matrix element Hij connecting those two states, but it could be also

a consequence of a poorly chosen generation probability p(j|i), in the denominator of

(2.50). To avoid these events it is important to choose p(j|i) in a sensible way, explained

in Sec. 2.3.8. As a last resort ∆τ can be dynamically adapted to ensure ps < ninit. This

can be achieved by keeping track of the “worst-case” spawning ratio |Hij|/p(j|i) across all

walkers and states and adapt ∆τ to ensure ps < ninit similar to the death-step mentioned

∗Although in nowadays FCIQMC simulation walkers are actually represented by real numbers, with
a minimum occupation nmin and not integers any more.
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above. If the excitation generation is performed in a nonoptimal way, the spawning step

is usually the most limiting influence on the applicable timestep. In Section 4.3 a more

flexible version of the timestep adaptation to ensure ps < ninit is presented.

2.3.8 Optimized Excitation Generation

The efficient stochastic realization of the off-diagonal contribution in Eq. (2.48)

ci(τ+∆τ)← ∆τ
∑

j 6=iHijcj(τ) via the spawning step, see Sec. 2.3.2, is the most important

and most challenging part of the FCIQMC method. The sum is stochastically sampled by

allowing one walker on a given state i to spawn new walkers on one connected state j, via a

single application of Ĥ. The challenge is to sensibly determine the generation probability

p(j|i), which in the best case scenario is proportional to the magnitude of the matrix

element |Hij| connecting the two states. The reason is that we want to sample stronger,

more important connections with a higher probability. As mentioned in Sec. 2.3.7, this

has a direct impact on the maximum possible timestep ∆τ , as the spawning probability

ps = ∆τ |Hij|/p(j|i) should be lower than the initiator threshold ninit. For this reason a lot

of work on an optimized excitation generation in FCIQMC has been expended, and in the

following I will present the current implementation in our FCIQMC code NECI.25∗

In the spawning step, we first choose if we want to perform a single or double excitation

with dynamically adaptable probabilities ps and pd = 1− ps for a walker on given state i,

separating p(j|i) = ps + pd. The probabilities ps and pd represent the relative importance

of single and double contributions in the off-diagonal sum in Eq. (2.48) and since there

are usually many more double excitations possible, pd � ps in general.†

If a single excitation is chosen with probability ps, we pick an electron a from an

occupied spin-orbital (a, σ) in |Di〉 with uniform probability pes(a) = 1/N at random.

For all symmetry allowed, see Sec. 2.3.8, unoccupied σ-spin orbitals (p′, σ) in |Di〉 the

Hamiltonian matrix elements 〈Di|Ĥa†p′,σaa,σ|Di〉 is calculated and a specific orbital (p, σ)

is chosen with the probability

phs (p|a) =
|〈Di|Ĥa†p,σaa,σ|Di〉|∑
p′|〈Di|Ĥa†p′,σaa,σ|Di〉|

. (2.60)

Due to the loop over (p′, σ) and the O(N) scaling of single excitation matrix elements,

this choice of generation probability scales as O(nN), with n the number of spatial

orbitals. However, since ps � pd this elaborate scheme if feasible and ensures a di-

rect proportionality p(j|i) = psp
e
s(a)phs (p|a) ∝ |Hij| for the rare single excitations, with

|Dj〉 = a†p,σaa,σ |Di〉.
∗A lot of work from different people was involved in this. Most notably Simon D. Smart, George

Booth, Nick Blunt, Kai Guther and myself.
†Except in a localized basis, where the molecular one-body integrals are far larger in magnitude than

the two-body integrals.
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If a double excitation is chosen with probability pd, we further subdivide pd into prob-

abilities to perform spin-parallel pp and spin-antiparallel excitations pa = 1 − pp, with

pd = pa + pp. For double excitations a pair of electrons (p, σ; q, σ′), with σ = σ′ for

parallel and σ = σ̄ for antiparallel spin excitations, is chosen randomly with uniform

probability ped = 1/N
p/a
pairs, with N

p/a
pairs being the number of parallel- or antiparallel-spin

pairs of electrons. For opposite spin excitations the first hole (p, σ) is chosen out of all

empty spin-orbitals (p′, σ) in |Di〉 with the probability139,300

phd(p|ab) = phd(p|a) =

√
|Vpa,pa|∑′

p

√
|Vp′a,p′a|

, (2.61)

with p and a of same spin, since the two-body molecular integrals (1.8) fulfil the Cauchy-

Schwarz inequality

|Vij,ab| ≤
√
|Via,ia| |Vjb,jb|. (2.62)

For same spin excitations the exchange contribution is additionally included in Eq. (2.61).

The second hole (q, σ′), where σ′ depends on the type of double excitation (spin-parallel

or spin-antiparallel), is randomly chosen out of all symmetry allowed empty orbitals

(q′, σ′) weighted with the exact matrix element associated with the excitation (a, σ; b, σ′ →
p, σ; q, σ′) with probability

phd(q|ab, p) =
|〈Di|Ĥ a†q,σ′a

†
p,σaa,σab,σ|Di〉|∑

q′|〈Di|Ĥ a†q′,σa
†
p,σaa,σab,σ|Di〉|

. (2.63)

This method of calculating the generation probability for doubles scales as O(n2), due

to the two loops to determine the phd . This can be reduced to a O(n) scaling, if the

first empty orbital (p, σ) is just picked with uniform probability phd(p|ab) = 1/(n − N).

However, experience has shown the full-weighted excitation generation, picking (p, σ)

according to (2.61), has proven to be worth the effort. The increased timestep, due to

a better relation of p(j|i) = pd px p
e
d p

h
d(p|ab) phd(q|ab, p), with px = pp for parallel and

px = pa for anti-parallel spin, and the magnitude of the matrix element |〈Di|Ĥ|Dj〉|, with

|Dj〉 = a†q′,σa
†
p,σaa,σab,σ |Di〉, compensates the additional O(n) scaling.

In the automated timestep adaptation, it is possible to not only change ∆τ to ensure

pd < 2 and ps < ninit but also the above mentioned probabilities, ps, pd, pa and pb. This

corresponds to a dynamically adjustment of these probabilities to the importance of the

corresponding types of excitations contained in the off-diagonal sum in Eq. (2.48). This

means the algorithm is able to dynamically adjust these parameters to the optimal values

for the specific problem at hand, represented by the Hamiltonian Ĥ.
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Discrete Symmetries in FCIQMC

In Section 2.3.8, “the choice of symmetry allowed orbitals” was mentioned. This refers

to the spatial point group or translational symmetry of the studied system, explained

in Sec. 1.3. The eigenfunctions of Ĥ will transform according to one of the irreducible

representations (irreps) Γi of the point group PG corresponding to the spatial symmetry of

the problem. If the basis states |Di〉 are constructed in such a way that they also transform

according to Γi, Ĥ will be block-diagonal in this symmetry-adapted basis. This symmetry

adaptation is implemented in the excitation generation step of FCIQMC, by only creating

excitations |Di〉 → |Dj〉 belonging to the same Γk. The point group symmetry of a Slater

determinant |Di〉 depends on the symmetry properties of the orbitals {φl} it is built

from. If the orbitals {φl} transform according to the irreps of PG (e.g. symmetry adapted

molecular orbitals (MOs) created as a linear combination of atomic orbitals (LCAO)),

then the symmetry Γi of |Di〉 is given by

Γi =
⊗
l

Γφl∈|Di〉, (2.64)

where Γφl∈|Di〉 are the symmetries of the occupied orbitals φl in |Di〉. For Abelian point

groups (Γi⊗Γj = Γj⊗Γi) the symmetry adaptation in the excitation generation is ensured

by:

For single excitations, the symmetry allowed empty spin-orbitals (p, σ) for a chosen

electron (a, σ) in the excitation |Dj〉 = a†p,σaa,σ |Di〉, are all orbitals from the same irrep

Γa,σ.

For double excitations the final chosen empty orbital (q, σ′) is symmetry restricted to

the orbitals transforming as the irrep

Γq,σ′ = Γa,σ ⊗ Γb,σ′ ⊗ Γp,σ, to ensure Γq,σ′ ⊗ Γp,σ = Γa,σ ⊗ Γb,σ′ , (2.65)

where (a, σ), (b, σ′) and (p, σ) are the already chosen electrons and first hole in the exci-

tation |Dj〉 = a†q,σ′a
†
p,σaa,σab,σ′ |Di〉 and Γ−1

p,σ = Γp,σ for Abelian point groups.
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Spin as a Symmetry Property

As mentioned in Section 1.3, the concept of symmetry is of paramount importance in

physics and chemistry. Apart from the Hilbert space size reduction by the use of a

simultaneous eigenbasis of operators commuting with the Hamiltonian in question, the

exploitation of symmetries inherent to the problem ensures the conservation of “good”

quantum numbers and the physical correctness of calculated quantities. In addition, the

use of a symmetry-adapted basis allows to target specific subspaces of the problem at

hand.

Commonly used symmetries in electronic structure calculations, mentioned in Sec. 1.3,

are discrete translational and point group symmetries, orbital angular momentum and

z-projection of total spin conservation.

One often ignored symmetry is the global SU(2) spin-rotation symmetry of spin-preserving,

nonrelativistic Hamiltonians. This symmetry leads to a conservation of the total spin

quantum number S and is represented by the operator Ŝ2. If

[ Ĥ,S2 ] = 0 (3.1)

the use of a spin symmetry adapted basis of Ŝ2 would allow us to:

Target specific spin states with definite S (S = 0 singlet, S = 1/2 doublet, etc.), which

allows the calculation of spin gaps between states inaccessible otherwise.

Eliminate spin-contamination of the sampled eigenfunctions of Ĥ, which should help the

FCIQMC method to converge more easily to the ground state of chosen symmetry.

Reduce the Hilbert space size by further block-diagonalization in (S,ms) sectors. This

reduction causes a more compact form of the wavefunction, which in turn enables

a more efficient sampling by the Monte Carlo approach.

Resolve (near-)degeneracies of eigenstates belonging to different total spin symmetry

sectors, posing a problem for the convergence of projective techniques, such as

FCIQMC.

So it is obvious that the use of a spin-adapted basis would be very beneficial for electronic

structure calculations and an efficient implementation thereof is a long sought-for goal

51
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in quantum chemistry. However, a major drawback of the incorporation of the total

spin symmetry is the additional computational cost associated with different flavours of

implementation. Theoretically there is no problem associated with the implementation

of a spin-adapted basis; but the practice begs to differ. So the question is not only, if

the formulation of a method in spin-eigenfunctions has the expected benefits, but also

if those advantages outweigh the additional cost. FCIQMC has been implemented in a

spin-pure basis before by S. Smart301 via different approaches than the unitary group.

However, this implementation was restricted to a maximum of 16 electrons; a limitation

we definitely want to exceed. In this chapter the theoretical framework to achieve this

goal via the mathematically elegant unitary group approach and its graphical extension

is laid out, while in the following Chapter 4 the actual computational implementation in

the FCIQMC method is discussed in depth.

The remainder of this chapter is organised as follows:

In Section 3.1 a general introduction to the concept, importance and history of spin as a

symmetry property is given. We present several alternative approaches to implement spin

symmetry in electronic structure calculations in Section 3.2. The fundamental connection

of the spin-free formulation of a general nonrelativistic Hamiltonian with the unitary group

is made in Section 3.3. This relation—of utmost importance—is the basis of the Unitary

Group Approach (UGA) and allows the mathematically elegant construction of a spin-

adapted basis in form of the Gel’fand-Tsetlin basis with the same storage cost as a regular

Slater determinant (SD) basis. In Section 3.4 the graphical extension of the UGA (GUGA)

is discussed, which is the basis for an efficient implementation of the excitation generation

and matrix element calculation between the spin-adapted basis states in FCIQMC. The

actual computational implementation of the Gel’fand-Tsetlin basis and matrix element

computation and excitation generation in the FCIQMC framework is presented in the

following Chapter 4, where also results obtained with this spin-adapted formulation are

presented.

3.1 A Brief History of Spin

Spin is an intrinsic property of every quantum mechanical particle and does not have

a classical analogue; it is given in units ~, same as angular momentum. However, un-

like orbital angular momentum, the eigenvalue of the z-projection of the total spin Ŝz

is quantized in all negative and positive half-integer values in addition to the integer

ones.68,244 The effect of spin was first observed in the experiment of Stern and Gerlach,103

where a quantized angular momentum of neutral silver atoms was measured. Goudsmith

and Uhlenbeck331 postulated an intrinsic angular momentum of electrons with value 1/2

to explain the even-numbered splittings —with and without external magnetic field—of

spectral lines in the Bohr-Sommerfeld model of atoms24,303 and termed this property spin.
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Pauli proposed a ‘hidden’ nonclassical rotation resulting in a doubling of electron states

to explain the electron shell structure of atoms and systematics of spectral lines and

formulate his exclusion principle.242

The explanation of spin was purely phenomenological, until Dirac’s Lorentz-invariant for-

mulation of the Schrödinger equation revealed the relativistic nature of spin.66,67 In his

equation of spin-1/2 particles with mass, the spin of the electron and also the concept

of anti-matter appear naturally from the combined treatment of special relativity and

quantum mechanics. This explains also the spin-independence of the Hamiltonian and

conservation of the total spin in the nonrelativistic limit. The symmetry operation asso-

ciated with spin is the global SU(2) spin-rotation, which is more elaborated on in Section

3.3.4. The spin s, with S = ~
√
s(s+ 1), of a particle has a major influence on the

statistics it obeys.243

Fermions with half-integer spin, s = 1/2, 3/2, . . . , follow the Fermi-Dirac statistics65,89

and obey the Pauli exclusion principle.242 A fermionic wavefunction is totally antisym-

metric and changes sign under the exchange of two particles Ψf (x, y) = −Ψf (y, x), thus

forbidding two fermions to be in the exact same quantum state.

Bosons, on the other hand, with integer spin, s = 0, 1, . . . , follow the Bose-Einstein

statistics32 with a symmetric wavefunction under particle exchange, Ψb(x, y) = Ψb(y, x).

In contrast to fermions, multiple bosons are allowed to occupy the exact same quantum

state at the same time. Loosely spoken, fermions are the particles which build all the

“matter” of our physical world, while bosons are the particles which carry the forces

between them.

3.2 The Use of Spin Symmetry in Electronic Struc-

ture Calculations

Despite the theoretical benefits, the total SU(2) spin symmetry is not as widely used as

other symmetries, like translational or point group symmetries, due to the usually imprac-

tical and complicated implementation thereof. There are several schemes to construct a

basis of Ŝ2 eigenfunctions, which will just be briefly sketched here.

Half-Projected Hartree-Fock (HPHF) functions133,302

are based on the fact that for an even number of electrons, every spin state S contains

degenerate eigenfunctions withms = 0. Using time-reversal symmetry arguments a HPHF
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Fig. 3.1: Illustration of the se-
quential spin coupling in the
genealogical spin eigenfunction
construction. The numbers in
the circles represent the number
of possible pathways and thus
the number of basis states be-
longing to the symmetry sec-
tor (N,S). Example taken and
adapted from [245]. In orange
on possible way to reach on the
14 states of the N = 8, S = 0
singlet is displayed.
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function can be constructed as

|Hi〉 =

|Di〉 for fully close-shell determinants

1√
2

(
|Di〉 ± |Di〉

)
otherwise,

(3.2)

where |Di〉 indicates the spin-flipped version of |Di〉. Depending on the sign of the open-

shell coupled determinants, |Hi〉 are eigenfunctions of Ŝ2 with odd (−) or even (+) eigen-

value S. HPHF functions are implemented in our FCIQMC code NECI,25,27,29 but their

use is restricted to systems with an even number of electrons and can only target the

lowest even- and odd-S state. Thus, it can not differentiate between, e.g. a singlet S = 0

and quintet S = 2 state.

Rumer spin-paired spin eigenfunctions270,295,301,353

A singlet state for a two electron system in two spatial orbitals i and j is given by

|S = 0〉 =
1√
2

(|i↓, j↑〉 − |i↑, j↓〉) . (3.3)

For N electrons, Rumer spin eigenfunction are constructed by coupling g pairs of electrons

to a singlet and the remaining (N − 2g) electrons to the maximum multiplicity S =
1
2
(N − 2g). Rumer type functions are connected to other flavours of spin-adapted bases,

like Kotani-Yamanouchi295 and Serber245 type functions. The main drawback of Rumer

spin-eigenfunctions is that they are not orthogonal.263

Kotani-Yamanouchi (KY) genealogical spin eigenfunctions169,245,335

KY functions are obtained by a sequential coupling of N electrons to obtain a total spin

of S. A given spin eigenfunction with N electrons and total and projected spin S and ms

is related to the eigenfunctions with N − 1 electrons and S ± 1/2 and ms± 1/2. Further-

more, every possible eigenstate with N + 1 electrons and S ± 1/2 and ms± 1/2 is related

to the current (N,S,ms) spin eigenstate. The possible spin eigenstates are constructed

by drawing a S vs. N diagram and every additional electron, increasing N → N + 1 can
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Fig. 3.2: Branching diagram of
Serber spin eigenfunctions for
N = 8 electrons. The numbers
represent the number of possi-
ble routes. Dashed horizontal
lines indicate singlet ∆S = 0
and solid lines triplet ∆S = 0
couplings. For S = 0 only sin-
glet ∆S = 0 is allowed. Ex-
ample taken and modified from
[245].

increase, S → S + 1/2, or decrease , S → S − 1/2, the total spin, with the restriction

S ≥ 0. All possible pathways which end up at a chosen state with definite N and S

represent the basis states belonging to this symmetry sector. This is depicted in Fig. 3.1

for an 8 electron system.

Serber-type spin eigenfunctions245,271,279

These type of functions are obtained by the sequential coupling of pairs of electrons.

States with N electrons and a desired total spin S are obtained from N − 2 electron

states with S ± 1 and ms ± 1. There are four ways of coupling a pair of electrons: (a)

Singlet coupling with S → S, (b) triplet coupling with S → S and (c) and (d) a triplet

coupling with S → S± 1. Similar to the KY spin eigenfunctions this can be visualized in

a branching diagram with additional horizontal coupling paths, see Fig. 3.2. For an odd

number of electrons the remaining electron can be coupled in a genealogical manner like

in the KY functions.301

Löwdin spin-projected Slater determinants195

Different to the two previous sequential coupling schemes, it is possible to obtain a spin

pure state by applying the spin-projection operator, defined by Löwdin195 as

ÔS =
∏
k 6=S

Ŝ2 − k(k + 1)

S(S + 1)− k(k + 1)
, (3.4)

on any trial state |ΨT 〉. ÔS projects out every component other than the chosen S com-

ponent and thus the resulting |ΨS〉 = ÔS |ΨT 〉 will be an eigenstate of Ŝ2 with total spin

S. There are however issues of overcompleteness and nonorthogonality of the obtained

bases, which complicates the efficient implementation of these projection based methods.

However, recently there has been work using the projector 3.4 and others in the form of

the Projected Coupled Cluster method130,260,328,329 to restore spin-symmetry of a broken

symmetry reference state. There has been a similar use of a projector, like Eq. 3.4, to
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restore the spin-symmetry of Matrix Product States (MPS) in the Density Matrix Renor-

malization Group (DMRG) method.182

Symmetric Group Approach74,246,269

An approach similar to the main topic of this chapter is the Symmetric Group Approach

(SGA) and as important concepts are similar in both approaches the SGA will be briefly

discussed here. The symmetric group SN is the group off all permutations of N objects.

The irreducible representations (irreps) of SN can be identified by Young shapes .367 As

the concept of Young shapes is helpful in understanding the Unitary Group Approach, we

will briefly explain them in more detail. Those shapes are an arrangement of N boxes in

rows and columns, where the number of boxes in each row is nonincreasing downwards.

The components of a specific irrep of SN are obtained by filling these boxes with distinct

‘tokens’ 1, 2, . . . , N , representing the permuted objects, which results in a so-called Young

tableau. A standard Young tableau has increasing number in each row from left to right

and in each column from top to bottom. An example of a Young shape representing an

irrep of S9 and an individual component is

and

1 3 5
2 4 8
6 7
9

.

The tableau represents a linear combination of permutation operators acting on the ob-

jects represented by the tokens. For a system of three particles there are three possible

Young shapes with two one-dimensional irreps and 1 two-dimensional irrep

S = : 1 2 3 , : 1 2
3

, 1 3
2

, A = :
1
2
3
.

The two shapes S = {N} and A = {1N} have a special meaning. S is the sum of all

permutations P of the N tokens, S = 1
N !

∑
P P , and thus represents the ‘symmetriser

operator’. A, on the other hand, is the sum of all even permutations P e minus the sum

of all odd permutations P o, A = 1
N !

(
∑

P e P
e −

∑
P o P

o), of the N tokens and thus acts

as the ‘antisymmetriser’. Consider two electrons in two open shell orbitals |Ψ2〉 = |↑, ↓〉.
The symmetriser S, represented by , acting on |↑, ↓〉 yields

S |Ψ2〉 =
1

2
(1 + P12) |↑, ↓〉 =

1

2
(|↑, ↓〉+ |↓, ↑〉) ,

with 1 being the identity operator, the symmetric spin function of the ms = 0 triplet

state. On the other hand A = {1N} = acting on |Ψ2〉 gives

A |Ψ2〉 =
1

2
(1− P12) |↑, ↓〉 =

1

2
(|↑, ↓〉 − |↓, ↑〉) ,
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the antisymmetric singlet spin function. The spin-eigenfunction construction in the SGA

relies on these Young shapes. The token in the SGA represent the singly occupied orbitals

of an electronic state and thus the coupling scheme is similar to the genealogical generation

of Kotani-Yamanouchi states.

The Rumer, Kotani-Yamanouchi and Serber type spin-eigenfunctions have been imple-

mented in our FCIQMC code NECI25 by Simon Smart,301 but due to practical limitations

the applications were restricted to small system sizes only.

Spin symmetry in other methods and software packages:

– The quantum chemistry software package Molcas,10 which—along with Molpro349,350

—is mainly used in this work to obtain the ab-initio Hamiltonian for the studied

systems, uses the Unitary Group Approach (UGA) to conserve the total spin quan-

tum number. However, they rely on the conversion between the Slater determinant

and configuration state function bases.125,226,284 As this conversion is used in the

FCI solvers of Molcas, the spin-adapted implementation is limited to the usual lim-

itations of the FCI method of 18 electrons in 18 spatial orbitals.

– There is a spin-adapted version of the Density Matrix Renormalization Group

approach,206,280,316,369 which uses the eigenvectors of a quasi-density matrix, which

commutes with the Ŝ2 operator, as a renormalized basis. The Wigner-Eckart the-

orem359 is used to efficiently store and compute matrix elements of the irreducibly

spin tensor operators with Wigner 9 − j coefficients.207 Recently there has also

been a spin-adapted DMRG implementation based on spin-projected MPS,182 with

a projection operator similar to Eq. 3.4.

– If the chosen reference state |Φ0〉 in the Coupled Cluster Ansatz (1.31), see Sec. 1.7.4,

is a closed-shell singlet and the cluster operators are expressed in terms of singlet ex-

citation operators, e.g. the one-body operator Êia = a†a↑ai↑+a†a↓ai↓,
∗ the initial spin

S = 0 of |Φ0〉 is conserved. However, with unrestricted coupled cluster (UCC) meth-

ods applied to open-shell systems, where a general form of the excitation operators

is used and/or the reference function |Φ0〉 is spin-symmetry broken, the total spin is

not a conserved quantity. There exists however a symmetry-adapted cluster (SAC)

approach in the CC theory,217,218,223 where a fully spin- and symmetry-adapted form

of the cluster operator is used.

– The Columbus program188,190,191 deserves a special mention, as it makes direct use

of the later explained Graphical unitary group approach (GUGA), see Sec. 3.4.

– The GAMESS software package111,274 uses a CI method based on the loop-driven

GUGA implementation of Brooks and Schaefer.39,40

– Based on the GUGA introduced by Shavitt,282,283 Shepard et. al.189,290 made exten-

∗This type of operator will also play a major part in the UGA
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sive use of the graphical representation of spin eigenfunctions in form of Shavitt’s dis-

tinct row table (DRT). In the multifacet graphically contracted method105,106,222,286–289

the ground state wavefunction is formulated in a nonlinear manner based on the

DRT, conserving the total spin S.

3.3 The Unitary Group Approach (UGA)

The main topic of this and the following Chapter 4 is the use of the Unitary Group Ap-

proach (UGA)230 to formulate the FCIQMC method in spin eigenfunctions. The UGA is

used to construct a spin-adapted basis, or configuration state functions (CSFs)∗, which

allows to preserve the total spin quantum number S in FCIQMC calculations. With the

help of the Graphical Unitary Group Approach (GUGA), introduced by Shavitt,282 an

efficient calculation of matrix elements entirely in the space of CSFs is possible; without

the necessity to transform to a Slater determinant (SD) basis. The GUGA additionally al-

lows the effective excitation generation, the cornerstone of the FCIQMC method, without

reference to a non spin-pure basis and the need of storage of auxiliary information, nec-

essary in previous spin eigenfunction formulations301 (Serber, etc., see Sec. 3.2). Finally,

opposed to the HPHF spin-symmetry implementation, it allows us to target all possible

spin eigenvalues and works for odd and even numbers of electrons.

To guide through the following derivations and explanations the “roadmap” for spin

eigenfunctions in FCIQMC is as follows:

(1) We concern ourselves exclusively with spin-preserving, nonrelativistic Hamiltonians

Ĥ in the Born-Oppenheimer approximation31 in a finite basis set.

(2) We will find a spin-free formulation of Ĥ in terms of singlet excitation operators,

Êij, which fulfil the same commutation relations as the generators of the unitary

group of order n, U(n).

(3) We label the number of spatial orbitals n, which will be related to the unitary group

of order n, U(n). The resulting 2n spin-orbitals basis can be related to the unitary

group of order 2n, U(2n).

(4) Our goal is to obtain the fermionic, thus totally antisymmetric, eigenfunctions of

Ĥ, represented by the total antisymmetric representation of U(2n).

(5) U(2n) can be expressed as the proper direct product U(2n) = U o(n)⊗U s(2), where

the superscripts denote the orbital (o) and spin (s) character of the representation.

(6) Mutually conjugate representation of U o(n) and U s(2) ensure the direct product

U(2n) to be totally antisymmetric.

∗See Section 3.3.5
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(7) We will find a basis, which is invariant and irreducible under the action of these

generators in form of the Gel’fand-Tsetlin (GT) basis.

(8) We will formulate the excitation generation and Hamiltonian matrix element cal-

culation entirely in this orthonormal spin-adapted basis via the graphical unitary

group approach.

This roadmap will lead us to an efficient formulation of FCIQMC in a spin-adapted basis.

In the remainders of this chapter, the theoretical framework of the above mentioned

points is laid out and the actual computational implementation in the FCIQMC method

is presented in the following Chapter 4.

The basis of the unitary group approach (UGA), which goes back to Moshinsky,213 is the

spin-free formulation of the spin-independent, non-relativistic, electronic Hamiltonian in

the Born-Oppenheimer approximation, see Eq. (1.6) in Sec. 1.2,

Ĥ =
n∑
ij

tij
∑
σ=↑,↓

a†iσajσ +
1

2

n∑
ijkl

Vijkl
∑

σ,τ=↑,↓

a†iσa
†
kτalτajσ, (3.5)

introduced in Sec. 1.2. With the reformulation

a†iσa
†
kτalτajσ = a†iσajσa

†
kτalτ − δjkδστa

†
iσalσ,

we can define ∑
σ

a†iσajσ = Êij (3.6)

and identify ∑
στ

a†iσa
†
kτalτajσ = ÊijÊkl − δjkÊil = êij,kl. (3.7)

as the singlet one- and two-body excitation operators.133 (3.6) and (3.7) are called singlet

operators, since acting with them on a state |S,ms〉 with definite spin S and z-projection

ms does not change these quantum numbers of the state, see Sec. 3.3.5.

With (3.6) and (3.7) the Hamiltonian (3.5) can be expressed in terms of these spin-free

excitation operators as202

Ĥ =
∑
ij

tij Êij +
1

2

∑
ij,kl

Vijkl êij,kl. (3.8)

An elegant and efficient method to create a spin-adapted basis and calculate the Hamil-

tonian matrix elements in this basis is based on the important observation, that the spin-

free excitation operators (3.6) and (3.7) in the non-relativistic Hamiltonian (3.8) obey the

same commutation relations, as the generators of the Unitary Group U(n),230–232 with n

being the number of spatial orbitals. The commutator of the spin-preserving excitation
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operators Êij can be calculated as

[ Êij, Êkl ] =
∑
στ

a†iσajσa
†
kτalτ − a

†
kτalτa

†
iσajσ

=
∑
στ

a†iσajσa
†
kτalτ − a

†
iσa
†
kτalτajσ − δila

†
kτajσ

=
∑
στ

a†iσajσa
†
kτalτ − a

†
iσajσa

†
kτalτ + δjka

†
iσalτ − δila

†
kτajσ

[ Êij, Êkl ] = δjk Êil − δil Êkj, (3.9)

which is the same as for the basic matrix units, see Eq. (3.16), and the generators of the

unitary group U(n), see Eq. (3.24). To give a complete overview of the concepts of the

UGA we will now discuss the unitary group and its generators in more detail.

3.3.1 The Generators of U(n)

The Unitary Group U(n) is the group of all n× n unitary matrices U, with the property

U†U = 1, and the ordinary matrix (Caley) product as the group operation. It is a

subgroup of the general linear group GL(n,C), the set of all n × n nonsingular matrices

A with detA 6= 0, over the complex numbers C

U(n) = {U ∈ GL(n,C) | U†U = 1 = UU†}. (3.10)

The special case, U(1), is the group of all complex numbers z with absolute value |z| = 1

and multiplication as the group operation. U(1) is abelian and has a one-dimensional

irreducible representation (irrep), which allows the construction of an invariant and irre-

ducible basis of U(n), see below 3.3.2. U(n) is a compact, continuous, real, n2 dimensional

Lie group. Lie groups, in addition to algebraic operations, are also endowed with a topol-

ogy (allowing the definition of concepts like neighbourhood, continuity, convergence, etc.)

under which the group operations and taking the inverse are analytic functions of the

group elements. The definition of U(n) as the subgroup of GL(n,C) with unitary ma-

trices is a nonlinear relation. To linearise the relationship defining U(n) one employs an

exponential mapping of any square matrix A

exp(A) =
∞∑
n=0

1

n!
An, (3.11)

with A0 = 1. This replaces the unitarity condition

UU† = 1, or U† = U−1 (3.12)
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with

U = exp A, with A† = −A, (3.13)

→ U† = exp A† = exp(−A) = (exp A)−1 = U−1, (3.14)

where A is anti-Hermitian (skew-Hermitian). The set of matrices A is itself closed under

addition and multiplication by a scalar

(αA + βB)† = − (αA + βB) , (3.15)

with α, β ∈ R, and thus constitutes a n2-dimensional vector space over R.234 However,

instead of the matrix multiplication it is closed under the commutator operation or Lie

product [ A,B ] = AB − BA. This vector space is the Lie algebra u(n)∗ of n × n skew-

Hermitian matrices with the commutator defined as the group multiplication. Due to the

vector space structure it is possible to employ the concept of a basis for the Lie algebra.

A suitable basis are the n×n matrix units eij with a single nonvanishing entry in the ith

row and jth column equal to 1. Any arbitrary unitary matrix can be expressed as

U = eA, with A =
∑
ij

αij eij, and αij = −α∗ji,

to ensure A is skew-Hermitian. Since a Lie algebra is closed under the commutator, so

are the chosen basis states

[ eij, ekl ] = eijekl − ekleij = δjk eil − δil ekj. (3.16)

The commutation relations of eij are the same as for the singlet excitation operators Êij,

see Eq. (3.9). For a mathematically rigorous comparison we have to identify the generators

of U(n). For this reason we have to define the basic set of one-parameter subgroups of

U(n)

{U(t) = exp(At) | t ∈ R,A† = −A} (3.17)

with a fixed skew-Hermitian A ∈ u(n), called the tangent matrix, and a single real

parameter t. The set of U(t) can be used to express any arbitrary matrix of U(n) in

the vicinity of U(0) (for mathematical rigour). U(t = 0) = 1 is the identity, the inverse

of U(t) is U(−t), since [ A,A ] = 0, and the multiplication U(t1)U(t2) yields U(t1 + t2).†

The basic set of U(n) can be chosen as

Uij(t) = exp(εijt), with t ∈ R, (3.18)

∗We follow the standard terminology to term a Lie algebra corresponding to a Lie Group with a lower
case letter.
†This rather technical explanation will be illuminated by the practical example of U(2) and SU(2) in

Sec. 3.3.4.
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where εij are the skew-Hermitian matrix units

εkk = iekk and εkl =

 i√
2

(ekl + elk) , for k < l

1√
2

(ekl − elk) , for k > l,
(3.19)

with ε† = −ε. Any skew-Hermitian matrix can be expressed as linear combinations of εkl

with real coefficients, so they can be equivalently chosen as a basis of the Lie algebra u(n)

instead of the basic matrix units eij.

The final ingredient to identify the generators of U(n) is to introduce the finite-dimensional

representation Γ of a linear Lie group G. This representation is the linear action of a Lie

group on a vector space V , e.g. Γ : G → U(V ) : A 7→ Γ(A), where A ∈ G and

Γ(A) ∈ U(V ). A generator A of the representation Γ on V is defined for every element

A of a Lie algebra g corresponding to a Lie Group G as234

A =
dΓ(A(t))

dt

∣∣∣∣
t=0

→ Γ(exp A) = expA. (3.20)

For a compact Lie group, like U(n), all finite-dimensional representations are completely

reducible and all irreducible representations are finite dimensional and denumerable. The

operators A themselves again form a Lie algebra isomorphic to g, so every representation

of a Lie group induces a representation of the corresponding Lie algebra. With the one-

parameter subgroups of U(n) defined as Uij(t) = exp(tεij), the representation Γ then

is

Uij(t)→ Γ(Uij(t)), (3.21)

with infinitesimal operators (or generators)

Xij =
dΓ(Uij(t))

dt

∣∣∣∣
t=0

. (3.22)

The Xij have rather complicated commutation relations, but we can equivalently define

the generators

Eii = −iXii and Eij =

 −i√2
(Xij − iXji) for i < j

1√
2

(Xij − iXji) for i > j,
(3.23)

with the same commutation relations as the basis matrix units

[Eij, Ekl ] = δjkEil − δilEkj. (3.24)

This is the important relation between the generators of the unitary group U(n) and

the spin-free formulation of nonrelativistic quantum chemistry.∗ Thus, this method is

∗The generators of U(n) are labelled without an hat Eij and the spin-free excitation operators with.
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called the Unitary Group Approach(UGA) and was pioneered by Moshinsky,213 Paldus230

and Shavitt,282,283 who introduced the graphical-UGA(GUGA) for practical calculation

of matrix elements.

With the observation that the spin-free, nonrelativistic Hamiltonian (3.8) is expressed

in terms of the generators of the unitary group, the use of a basis that is invariant

and irreducible under the action of these generators is desirable. This approach to use

dynamic symmetry to block-diagonalize the Hamiltonian is different to the case, where the

Hamiltonian commutes with a symmetry operator. In the UGA Ĥ does not commute with

the generators of U(n), but rather is expressed in terms of them. Block diagonalization

occurs, due to the use of an invariant and irreducible basis under the action of these

generators. Hence, the UGA is an example of a spectrum generating algebra with dynamic

symmetry.147,304

3.3.2 The Gel’fand-Tsetlin Basis

The so-called Gel’fand-Tsetlin (GT)99–101 basis is invariant and irreducible under the

action of the generators of U(n). Following [304] we make the analogy to the more

familiar spherical harmonics Ylm to better understand the basics of the GT-basis con-

struction.

The components, L̂x, L̂y and L̂z, of the orbital angular momentum operator L̂ are the

generators of the SO(3) group of rotations in 3D space. Operators which commute with

all generators of a group are called Casimir operators. In the case of SO(3) the total

orbital angular momentum operator L̂2 has this property, [ L̂2, L̂i ] = 0, i = x, y, z. At the

same time L̂z can be identified as the sole generator and Casimir operator of the rotations

in 2D space, SO(2). The spherical harmonics, Ylm, are simultaneous eigenfunctions of

the commuting Casimir operators L̂2 of SO(3) and L̂z of SO(2). So they are adapted

to the group chain SO(3) ⊃ SO(2). The values l and m, which completely label the

eigenfunctions Ylm, are directly related to the eigenvalues of the two Casimir operators.

Additionally, there are restrictions on the possible values of m for a given l, −l ≤ m ≤
l, where l specifies the irreducible representation (irrep) of SO(3). The action of the

generators of SO(3), L̂x, L̂y and L̂z, on Ylm results in linear combinations of spherical

harmonics with differingm, but identical l quantum number. Thus, they form an invariant

and irreducible basis under the action of the generators, which is exactly what we want

to obtain for the generators of the unitary group U(n).

The group U(n) has n2 generators, Eij, and a total of n Casimir operators and similar to

the Ylm, which are based on the group chain SO(3) ⊃ SO(2), the GT basis is based on

the group chain

U(n) ⊃ U(n− 1) ⊃ · · · ⊃ U(2) ⊃ U(1), (3.25)
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where, as mentioned, U(1) is Abelian and has a one-dimensional irrep. Each subgroup

U(n − 1), U(n − 2), . . . , U(1) has n − 1, n − 2, . . . , 1 Casimir operators, resulting in a

total of n(n+1)/2 commuting operators, named Gel’fand invariants .99 The simultaneous

eigenfunctions of these invariants form the GT basis and are uniquely labelled by a set

of n(n + 1)/2 integers related to the eigenvalues of the invariants. Thus, based on the

branching law of Weyl,351 a general N -electron CSF can be represented by a Gel’fand

pattern101

[m] =


m1,n m2,n · · · mn−1,n mn,n

m1,n−1 · · · mn−1,n−1

. . . · · · . .
.

m1,2 m2,2

m1,1

. (3.26)

The integers mij in the top row (and all subsequent rows) of (3.26) are nonincreasing,

m1n ≥ m2n ≥ · · · ≥ mnn, and the integers in the subsequent rows fulfil the condition

mi,j+1 ≥ mij ≥ mi+1,j+1, (3.27)

called the “in-between” condition.194 This can be seen as a generalization of the restriction

−l ≤ m ≤ l for the Ylm. The n non-increasing integers of the top row of Eq. (3.26),

mn = (m1n,m2n, . . . ,mnn), are called the highest weight of the representation, and specify

the chosen irrep of U(n), just as l does for the spherical harmonics. The following n− 1

rows label the states belonging to the chosen irrep, similar to m in the case of Ylm.

Let Γ{mn} be the irreducible representation of U(n), uniquely specified by the weight

vector mn. Any representation Γ of a group G yields a representation of any of its

subgroups H, H ⊂ G, subduced by Γ, Γ ↓ G. Γ{mn} ↓ U(n− 1) of U(n− 1) subduced by

Γ{mn} is simply reducible,234 due to the branching law of the unitary group,352

Γ{mn} ↓ U(n− 1) =
∑
⊕Γ{mn−1}, (3.28)

where the direct sum extends over all irreps Γ{mn−1} of U(n − 1) for which the ”in-

between” condition (3.27) holds and each irrep is contained once at most.194,353 This fact

and since U(1) is abelian with one-dimensional irreps, led Gel’fand and Tsetlin to the

realization that the permissible highest weights of the subgroups in the chain (3.25) can

be used to uniquely label the basis vectors of a general U(n) irrep space.

In CI calculations one usually employs a one-particle basis of 2n spin-orbitals with creation

â†iσ and annihilation âjτ operators of electrons in spatial orbital i, j with spin σ, τ . The

(2n)2 operators

Âiσ,jτ = â†iσâjτ ; i, j = 1, . . . , n; σ, τ = 1, 2 (3.29)
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can be associated with the generators of U(2n) with the commutation relation

[ Âiσ,jτ , Âi′σ′,j′τ ′ ] = δji′δτσ′Âiσ,j′τ ′ − δij′δστ ′Âi′σ′,jτ (3.30)

While the partial sums over spin or orbital indices of these operators

Êij =
∑
σ=↑,↓

Âiσ,jσ and Êστ =
n∑
i=1

Âiσ,iτ (3.31)

are related to the orbital U o(n) and spin U s(2) generators. Superscript o denotes the pure

orbital space and s the pure spin space. Since we deal with fermions we have to restrict

ourselves to the totally antisymmetric representations of U(2n), denoted as Γ{12n}.∗ Since

the molecular Hamiltonian (3.8) is spin independent, we can consider the proper subgroup

of the direct product of the spin-free orbital space U o(n), with n2 generators Eij, and the

pure spin space U(2) with the four generators Eστ ,230 given as

U(2n) ⊃ U o(n)⊗ U s(2). (3.32)

With the total antisymmetric representation Γ{12n} of U(2n), and mo
n and ms

2 as the

highest weights representing the irreps of U o(n) and U s(2) respectively, the subduced rep-

resentation Γ{12n} ↓ [U o(n)×U s(2)] of U o(n)×U s(2) contains only those representations

Γ{mo
n}⊗Γ{ms

2} of U o(n)×U s(2) for which mo
n and ms

2 are mutually conjugate.202,203,213,234

This can be pictorially explained by the previously introduced Young shapes, see Sec. 3.2

and is explained in more detail in Sec. 3.3.3 and shown in Fig. 3.3.

Plainly spoken, this means the irreps of U o(n) and U s(2) are related in a specific manner

to obtain physically plausible states satisfying the Pauli exclusion principle and antisym-

metry of fermionic wavefunctions. This is another aspect of the fact that in the totally

antisymmetric wavefunction the totally antisymmetric orbital part must be combined

with the totally symmetric spin part and vice versa. E.g. an antisymmetric spin function

(↑↓ − ↓↑) forces a symmetric spatial function (a2 or ab + ba), yielding an antisymmetric

singlet state. On the other hand, a symmetric spin function (↑↑, ↑↓ + ↓↑, ↓↓) is com-

bined with an antisymmetric spatial function (ab− ba) to yield the antisymmetric triplet

states.

Since the Hamiltonian (3.8) is spin-independent, U s(2) does not contribute to the matrix

element evaluation, so we only have to concern ourselves with the irreps of the orbital

U o(n) subgroup, following Matsen’s spin-free approach.202,203 Nevertheless it is illuminat-

ing to investigate the pure spin space U s(2) and its relation to the group of spin rotations

SU(2), which after all is the symmetry associated with the conservation of the total spin

S, see Sec. 3.1.

∗This corresponds to the totally antisymmetric irrep of SN , with N = 2n, represented by the Young
shape with only one column, see 3.2.
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3.3.3 The Pure Spin Space - U s(2)

The irreducible representation of the pure spin U s(2) group, appearing in the direct

product (3.32), completely determines the irrep of the pure orbital U o(n) group and

vice versa, to yield the totally antisymmetric representation of U(2n). The operators

Êστ =
∑n

i a
†
iσaiτ are identified as the generators of the unitary group of order 2, U s(2).

The diagonal terms, Êσσ =
∑n

i niσ, are the number operators of electrons with spin σ,

N̂σ. The basis states of U(2) can be uniquely labelled with the following Gel’fand pattern,

corresponding to the group chain U(2) ⊃ U(1),

U(2) :

U(1) :

[
ms

12 ms
22

ms
11

]
, (3.33)

with the in-between condition ms
12 ≥ ms

11 ≥ ms
22. The top row, called the highest weight

vector, ms
2 = (ms

12,m
s
22) labels the chosen irrep of U s(2). At the same time ms

2 mutually

determines the corresponding irrep mo
n of U o(n) in the direct product (3.32) to yield a

totally antisymmetric representation of U(2n). The top row ms
2 specifies the total number

of electrons N = ms
12 + ms

22, total spin S = (ms
12 −ms

22)/2, while the entry ms
11 specifies

the z-component of Ŝz of the total spin angular momentum.

The chosen irrep ms
2 can also be represented in a pictorial manner by the means of Young

shapes, introduced in Sec. 3.2. The Young shape of U s(2) is an arrangement of N boxes

, with ms
12 boxes in the first row and ms

22 in the second, specifying the chosen irrep of

U s(2). Similar to the symmetric group approach, the basis states of U s(2) can be identified

by filling the Young shape with “tokens”. In the UGA, in contrast to the SGA, the token

are allowed to be repeated in the same row, but not in the same column, resulting in a

so-called Weyl tableau.∗ Repetition of tokens in the same column would correspond to two

electrons being in the exactly same quantum state, violating the Pauli exclusion principle.

In the case of U s(2) we choose the tokens ↑ and ↓, representing the eigenvectors of the

Ŝz operator, Ŝz |↑〉 = +1/2 |↑〉 and Ŝz |↓〉 = −1/2 |↓〉 (in units of ~). The complete basis

is obtained by all permissible fillings of the boxes with tokens, e.g. ↑ . The rules to fill

the Weyl tableau based on a given Gel’fand pattern are: The tokens in the first row of

the Weyl Tableau are determined by the first diagonal [ms
11,m

s
12, . . . ,m

s
1n] of the Gelfand

pattern. Starting from the bottom of the Gel’fand pattern, the first token ↑ is put m11

times and the second token ↓ is put m12 − m11 times into the first row. In general the

second diagonal determines in a similar fashion the entries of the second row of the Weyl

tableau. Because there are only 2 tokens and two rows for irreps of the pure spin U s(2)

group, the second token ↓ is put m22 times into the second row, which completely fills the

second row. Consequently the entry m11 determines the ms quantum number, as

2ms = m11 − (m12 −m11)−m22 = 2m11 − (m12 +m22) = 2m11 −N, (3.34)

∗Due to the possible repetitions, tokens can also be omitted in a Weyl tableau.
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Table 3.1: All permissible states of two spin-1/2 particles represented by the equivalent
Gel’fand pattern, Weyl Tableau and Dirac notation.

S = 1 S = 0

ms = 1 ms = 0 ms = −1 ms = 0

Gel’fand pattern

[
2 0

2

] [
2 0

1

] [
2 0

0

] [
1 1

1

]

Weyl Tableau ↑ ↑ ↑ ↓ ↓ ↓ ↑
↓

Dirac Notation |↑↑〉 1√
2
(|↑↓〉+ |↓↑〉) |↓↓〉 1√

2
(|↑↓〉 − |↓↑〉)

Table 3.2: N = 3 particles with two possible irreps of U(2), S = 1/2 : ms
2 = (2, 1) and

S = 3/2 : ms
2 = (3, 0).

S Gel’fand pattern Young shape Basis states

m11 : 3 2 1 0

ms : 3/2 1/2 −1/2 −3/2

1/2

[
2 1

m11

]
↑ ↑
↓

↑ ↓
↓

3/2

[
3 0

m11

]
↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓

with N = m12 + m22 being the total number of electrons. The in-between condition

m12 ≥ m11 ≥ m22 ensures |ms| ≤ S = (m12−m22)/2. As can be seen in the example of a

single particle of spin-1/2: ms
2 = (1, 0):

|↑〉 =

[
1 0

1

]
=̂ ↑ , |↓〉 =

[
1 0

0

]
=̂ ↓ .

For two spin-1/2 particles there are two possible irreps with the highest weight mS
2 =

(1, 1) and ms
2 = (2, 1), which correspond to singlet (S = 0) and triplet (S = 1) states.

For the triplet there are three permissible ms
11 values fulfilling the in-between condition,

corresponding to the ms = 0,±1 states, as can be seen in Table 3.1. An example of the

doublet and quartet states of three electrons are shown in Table 3.2.

As mentioned the irreps of the orbital U o(n) and spin U s(2) space must be mutually

conjugate for the irrep Γ{mo
n ⊗ ms

2} of the direct product subgroup U o(n) ⊗ U s(2) to

obtain the totally antisymmetric representation Γ{12n} of U(2n). This correspondence is

very clear in terms of Young shapes. To yield a totally antisymmetric representation of

U(2n) the Young shape of a chosen U s(2) irrep must be the transpose (rows and columns

exchanged) of the U o(n) Young shape and vice versa, as depicted in Fig. 3.3. Since, by

definition, U s(2) only corresponds to Young shapes with at most two rows, the Young
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shapes representing irreps of U o(n) are restricted to have two columns at most. This is

a direct correspondence to the Pauli exclusion principle that a spatial orbital i can be

occupied by two electrons with different spin at most.

⊗=

U o(n) U s(2)U(2n)

a b

a

b

Fig. 3.3: Necessary relation of the Uo(n)
and U s(2) irreps represented by their Young
shapes to yield the totally antisymmetric rep-
resentation Γ{12n} of U(2n).

Denoting the number of two-row columns

as a and the number of single-row columns

as b for U s(2), as shown in Fig. 3.3, the to-

tal spin is given by S = b/2 and the number

of electrons by N = 2a+ b. The Ŝz opera-

tor of the z-component of the total spin can

be expressed in terms of the spin operators

Eστ (in units of ~)

Ŝz =
1

2

(
Ê↑↑ − Ê↓↓

)
(3.35)

as this counts the difference of the total

number of ↑- and ↓-spin electrons. For a spin-independent Hamiltonian it is unimportant

which z component of the total spin is chosen, as it is block-diagonal with 2S+1 identical

blocks corresponding to the chosen multiplicity. If we choose the highest possible Sz = S

value and denote the chosen irrep of U s(2) by ms,max
2 , it is easy to show that the chosen

basis states are indeed eigenfunctions of the Ŝ2 operator. This relation is most obvious

if we look at the matrix representation of the U s(2) generators and their relation to the

SU(2) generators, expressed in terms of the more familiar Pauli matrices.

3.3.4 Matrix Representation of U(2) and SU(2)

As a reminder, the unitary group of order 2, U(2), consists of all unitary 2× 2 matrices.

In general every element U ∈ U(2) can be expressed as

U = eiφ/2︸︷︷︸
U(1)

(
eiφ1 cos θ eiφ2 sin θ

− e−iφ2 sin θ e−iφ1 cos θ

)
︸ ︷︷ ︸

SU(2)

, (3.36)

with 4 real parameters φ, φ1, φ2, θ and det U = eiφ. This form highlights the relation of

U(2) = U(1) ⊗ SU(2) as U(1) is the group of all complex numbers with absolute value

1, eiφ/2, and SU(2). For the special unitary group SU(2) the additional restriction of

unimodularity, det U = 1, reduces the number of parameters to 3. Alternatively any

unitary matrix can be expressed as the exponential of a skew-Hermitian matrix A

U = exp A with A† = −A. (3.37)
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A general skew-Hermitian matrix can be expressed as

A =

(
ia1 b0 + ib1

−b0 + ib1 ic1

)
, (3.38)

with 4 real parameters a1, b0, b1 and c1. As any general 2× 2 matrix, A can be expressed

as a linear combination, A =
∑

ij αijeij, of the four basic matrix units eij

e11 =

(
1 0

0 0

)
, e12 =

(
0 1

0 0

)
, e21 =

(
0 0

1 0

)
, e22 =

(
0 0

0 1

)
, (3.39)

with complex coefficients αij. These basic matrix units fulfil the defining commutation

relations of the unitary group U(n)

[ eij, ekl ] = δjkeil − δilekj. (3.40)

However, to define a one-parameter subgroup of U(2) it is beneficial to define the following

skew-Hermitian basis set

ε11 =ie11 =

(
i 0

0 0

)
, ε22 = ie22 =

(
0 0

0 i

)
(3.41)

ε12 =
i√
2

(e12 + e21) =
i√
2

(
0 1

1 0

)
(3.42)

ε21 =
1√
2

(e21 − e12) =
1√
2

(
0 1

−1 0

)
, (3.43)

fulfilling ε† = −ε. εij obey the slightly modified commutation relations∗

[ εij, εkl ] = δilεjk − δjkεli (3.44)

in the two-dimensional matrix representation. With εij, a general 2 × 2 skew-Hermitian

matrix A can be expressed as A =
∑

ij βijεij with real parameters βij. The four one-

parameter subgroups of the unitary group U(2) can be expressed as

Uij(βij) = exp(βijεij). (3.45)

The generators of U(2) can be defined as

Xij =
dUij(βij)

dβij

∣∣∣∣
βij=0

. (3.46)

∗Note the different indices!
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These generators Xij are just the skew-Hermitian basic matrix units εij. By redefining a

different set of generators as

Eii = −iEii, E12 = − i√
2

(X12 − iX21) and E21 =
1√
2

(X21 − iX12) (3.47)

we end up again with generators fulfilling the same commutation relations as the basic

matrix units eij

[ Eij, Ekl ] = δjkEil − δilEkj (3.48)

and the Hermitian property E†ij = Eji. The cumbersome route over defining skew-

Hermitian matrix units was necessary for a mathematically sound definition of the one-

parameter subgroups Uij(βij) of U(2) as mentioned in Sec. 3.3.1.

Matrix representation of SU(2)

The special unitary group SU(2) is a subgroup of U(2) consisting of all unitary 2 × 2

matrices S with det S = 1. They can be expressed as∗

S =

(
a b

−b∗ a∗

)
=

(
a0 + ia1 b0 + ib1

−b0 + ib1 a0 − ia1

)
=

(
eiφ1 cos θ eiφ2 sin θ

− e−iφ2 sin θ e−iφ1 cos θ

)
(3.49)

with det =|a|2 + |b|2 = a2
0 + a2

1 + b2
0 + b2

1 = 1; a real three-parameter Lie Group. S can also

be expressed in terms of the 2× 2 identity I2 and the Pauli spin matrices

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
(3.50)

in the following way

S = a0I2 + ia1σ̂x + ia2σ̂y + ia3σ̂z. (3.51)

Or more concise as S = a0I2 + i~a · ~̂σ, with ~a = (a1, a2, a3) and ~σ = (σ̂x, σ̂y, σ̂z). Since

σ̂2
i = I2 there are 3 one-parameter subgroups of SU(2)

gj(aj) = exp(iajσ̂j) (3.52)

and the infinitesimal generators are given by the Pauli matrices

σj =
dgj(aj)

daj

∣∣∣∣
aj=0

=
1

2
σ̂j, (3.53)

with the commutation relations

[ σ̂i, σ̂j ] = 2iεijkσ̂k, (3.54)

with εijk being the totally antisymmetric Levi-Civita tensor. Equivalently the spin-angular

∗Notice the equivalence to the second term in Eq. (3.36).
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momentum operators Ŝj = 1/2σj which fulfil the SU(2) (and SO(3)) commutation rela-

tions

[ Ŝi, Ŝj ] = iεijkŜk (3.55)

can be chosen as generators. This shows the connection of the SU(2) group to the SO(3)

group of proper rotations in 3D space. However, the definition of Ŝj = 1/2 σ̂j implies that

for the one-parameter subgroups of SU(2)

gj(aj) = exp(i
aj
2
Ŝj) (3.56)

an angle of aj and aj + 2π map to two distinct elements of SU(2). However, a rotation

of 2π in 3D space maps to the same element of SO(3). This is the distinct property of

spin-1/2 particles obtaining a phase of −1 after rotation of 2π and only mapping to the

same element after a 4π rotation.∗

3.3.5 Connection of U(2) and SU(2)

With these results it is easy to see the connection between the generators of U(2), Eij and

SU(2), Ŝi, given by235

Ŝx =
1

2
σ̂x =

1

2

(
0 1

1 0

)
=

1

2
(E12 + E21) =

1

2

(
Ê↑↓ + Ê↓↑

)
(3.57)

Ŝy =
1

2
σ̂y =

1

2

(
0 −i
i 0

)
= − i

2
(E12 − E21) = − i

2

(
Ê↑↓ − Ê↓↑

)
(3.58)

Ŝz =
1

2
σ̂z =

1

2

(
1 0

0 −1

)
=

1

2
(E11 − E22) =

1

2

(
Ê↑↑ − Ê↓↓

)
, (3.59)

where the last relation comes from the choice of the eigenbasis of Ŝz, |↑〉 = (1, 0) and

|↓〉 = (0, 1). And conversely

E11 = Ê↑↑ = Ŝz +
1

2
1, E22 = Ê↓↓ = Ŝz −

1

2
1 (3.60)

E12 = Ê↑↓ = Ŝx + iŜy = Ŝ+, E21 = Ê↓↑ = Ŝx − iŜy = Ŝ−, (3.61)

with the known ladder operators Ŝ+ and Ŝ−. With these relations the total spin operator

Ŝ2 can be expressed in terms of Eστ 234 as

Ŝ2 = Ŝz

(
Ŝz + 1

)
+ Ŝ−Ŝ+ =

1

4

(
Ê↑↑ − Ê↓↓

)(
Ê↑↑ − Ê↓↓ + 21

)
+ Ê↓↑Ê↑↓. (3.62)

As mentioned above the choice of the Sz quantum number is arbitrary for a spin-independent

Hamiltonian. If we denote the direct product basis of U o(n) × U s(2) as |mo〉 ⊗ |ms,max〉
∗This is the reason SU(2) is said to be twice the size of SO(3).
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with maximum possible Sz = S, the action of the Ŝ+ operator on a basis state yields

Ŝ+ |mo〉 ⊗ |ms,max〉 = Ê↑↓ |mo〉 ⊗ |ms,max〉 = |mo〉 ⊗ Ê↑↓ |ms,max〉 = 0, (3.63)

since Ê↑↓ only affects the spin part and Ŝ+ acting on a state with already maximal Smaxz

yields zero. As already seen the chosen basis functions are eigenfunction of the remaining

Ŝz = 1
2

(
Ê↑↑ − Ê↓↓

)
operators with eigenvalue Smaxz = S. So the composite basis states

|m⊗ms,max〉 are eigenfunctions of Ŝ2 with eigenvalue S(S + 1) with S = Smaxz . This can

also be shown for a general Sz value, but is not necessary here, since we only wanted to

demonstrate that the chosen basis functions are eigenfunction of the total spin operator

and the choice of the Sz value is arbitrary for a spin-independent Hamiltonian.

The fact that the singlet excitation operators Êij commute with Ŝz and Ŝ2,

[ Ŝz, Êij ] = [ Ŝ2, Êij ] = 0 (3.64)

and consequently do not change the spin of a state, mentioned in Sec. 3.3, is easy to show

with the relations (3.57-3.59). Since

[ Êij, Êστ ] = 0, (3.65)

because Êij are spin-independent and Êστ are orbital independent,233 Eq. (3.64) is easy

to show with Ŝz and Ŝ2 expressed in terms of Êστ (3.57-3.59). Furthermore, since the

spin-free Hamiltonian (3.8) is expressed solely in terms of the singlet excitation operators

Êij,

[ Ĥ, Ŝ2 ] = [ Ĥ, Ŝz ] = 0 (3.66)

follows directly from (3.64).

The special case of the diagonal spin-independent occupation number operators of spatial

orbital i, Êii = ni↑ + ni↓ = N̂i, of course also commutes with Ŝ2 and Ŝz

[ Ŝz, N̂i↑ + N̂i↓ ] = [ Ŝ2, N̂i↑ + N̂i↓ ] = 0. (3.67)

This means we can set up spin-eigenfunctions which are simultaneous eigenfunctions of

the operator N̂i. Singly occupied orbitals of these eigenfunctions of N̂i are degenerate

independent from the fact if they are filled with an ↑- or a ↓-spin electron, as only the

orbital occupation matters. The set of all states with the same orbital occupation number

is called an orbital configuration133 and if all those degenerate states are combined in

the construction of a spin-eigenbasis the resulting states are called configuration state

functions (CSFs). Spin-eigenfunctions based on the UGA fall in the category of CSFs

and thus we will refer to them as CSFs from now on. As an example there are four possible

SDs for two electrons in two spatial orbitals with the orbital configuration n1 = n2 = 1

and z-projection of spin ms = 0,±1. These four states can be combined to CSFs to yield
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the singlet S = 0 and three possible S = 1 triplet spin eigenfunctions:

Orbital configuration Spin-orbit representation ms Configuration state functions S

|↑, ↓〉 0 1√
2
(|↑, ↓〉 − |↓, ↑〉) 0

|1, 1〉
|↓, ↑〉 0 1√

2
(|↑, ↓〉+ |↓, ↑〉) 1

|↑, ↑〉 1 |↑, ↑〉 1

|↓, ↓〉 -1 |↓, ↓〉 1

3.3.6 The Pure Orbital Space - U o(n)

After this in-depth discussion of the properties of the pure-spin group U s(2), we turn our

focus now on the pure orbital space, associated with the unitary group of order n, U(n),

where we will soon drop the superscript o for brevity. The consequence of the mutually

conjugate relationship between U o(n) and U s(2) irreps for electronic structure calculations

is that the integers mij in a Gel’fand pattern for U o(n) are related to occupation numbers

of spatial orbitals. This means they are restricted to 0 ≤ mij ≤ 2, due to the Pauli

exclusion principle. The highest weight, mo
n, indicates the chosen electronic state with

the conditions
n∑
i=1

min = N and
1

2

n∑
i=1

δ1,min = S, (3.68)

with N being the total number of electrons and the number of singly occupied orbitals,

δ1,mij is equal to twice the total spin value S.

Therefore a top row of m3 = (2, 1, 0) specifies an electronic state with 3 electrons (the

sum of the top row entries is equal to three) in 3 spatial orbitals with a total spin of

S = 1/2 (the sum of the singly occupied orbitals is equal to one). All the CSFs belonging

to this irrep are obtained by filling the Gel’fand pattern with integers mij in all possible

ways, fulfilling the in-between condition (3.27). The 8 possible ways to do that are:2 1 0

2 1

2


2 1 0

2 1

1


2 1 0

2 0

2


2 1 0

2 0

1


2 1 0

2 0

0


2 1 0

1 1

1


2 1 0

1 0

1


2 1 0

1 0

0



3.3.7 The Paldus tableau

The restriction of 0 ≤ mij ≤ 2 in electronic Gel’fand patterns led Paldus230 to the more

compact formulation by a table of 3n integers. It is sufficient to count the appearances 2′s,

1′s and 0′s in each row i of a Gel’fand pattern and store this information, denoted by ai, bi

and ci in a table, named a Paldus tableau. Eq. (3.69) shows the equivalent representation
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of a state with 6 electrons in 8 orbitals and total spin S = 2 in the Gel’fand pattern and

Paldus tableau format. 

2 2 1 1 0 0 0 0
2 2 1 1 0 0 0

2 1 1 0 0 0
2 1 1 0 0

2 1 0 0
1 1 0

1 0
1


≡



ai bi ci
2 2 4
2 2 3
1 2 3
1 2 2
1 1 2
0 2 1
0 1 1
0 1 0


(3.69)

The first column, ai, contains the number of doubly occupied orbitals, the second column,

bi, the number of singly occupied and the last one, ci, the number of empty orbitals. And

for each row the condition

ai + bi + ci = i, (i = 1, . . . , n) (3.70)

holds, so any two columns are sufficient to uniquely determine the state. The top row

satisfies the following properties

a = an =
1

2
N − S, b = bn = 2S, c = cn = n− a− b = n− 1

2
N − S, (3.71)

completely specifying the chosen electronic state as an irrep of U(n)∗. The total number

of CSFs for a given number of orbitals n, electrons N and total spin S is given by the

Weyl-Paldus230,352 dimension formula

NCSF =
b+ 1

n+ 1

(
n+ 1

a

)(
n+ 1

c

)
=

2S + 1

n+ 1

(
n+ 1
N
2
− S

)(
n+ 1

n− N
2
− S

)
. (3.72)

As it can be seen from Eq (3.72), the number of possible CSFs—of course—still scales

combinatorially with the number of electrons and orbitals, as seen in Fig. 3.4 with a

comparison to the total number of possible SDs (1.38). However, the ratio of the total

number of SDs (without any symmetry restriction) and CSFs for N = n can be estimated

by Stirling’s formula (for sufficiently large n and N) as

NSD

NCSF

≈
√
π nn

2(2S + 1)
, (3.73)

which shows orbital dependent, ∼ n3/2, decrease of the efficient Hilbert space size for

a spin-adapted basis. The Paldus tableau also emphasizes the cumulative aspects of

the coupling between electrons, with the i-th row providing information on number of

electrons, Ni (up to i-th level) and the spin, Si, by

Ni = 2ai + bi, Si =
1

2
bi. (3.74)

∗From now on we drop the superscript o as we exclusively deal with the orbital group U(n).
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Table 3.4: Conjugate irreps of the spatial U(3) and spin U(2) group for the singlet, S = 0,
and triplet, S = 1, state of 2 electrons in 3 spatial orbitals. The spatial U(n) irreps are
determined by the spin-state states. All the CSFs belonging to this irrep are obtained by
filling orbital “tokens” (1,2,3) with no repetitions in same column in the Weyl tableau
representation. The correspondence to Gel’fand patterns is also shown.

S = 0 :
U(3)

⊗
U(2)

S = 1 :

U(3)

⊗
U(2)

[
2 0 0

2 0
2

]
1 1

[
2 0 0

1 0
1

]
1 3

[
1 1 0

1 1
1

]
1
2[

2 0 0
2 0

1

]
1 2

[
2 0 0

1 0
0

]
2 3

[
1 1 0

1 0
1

]
1
3[

2 0 0
2 0

0

]
2 2

[
2 0 0

0 0
0

]
3 3

[
1 1 0

1 0
0

]
2
3

Table 3.3: Correspondence of Paldus tableau,
step-vector and Weyl tableau representation
of a CSF belonging to the N = 8, n = 7 and
S = 2 irrep of U(n).

1 1
2 5
4 7
6
7

a

b

orbital (i) ai bi Ni Si di

7 3 2 8 1 3

6 2 2 6 1 1

5 2 1 5 1/2 2

4 1 2 4 1 1

3 1 1 3 1/2 0

2 1 1 3 1/2 1

1 1 0 2 0 3

0 0 0 0 0

Of course, like a Gel’fand pattern, a Paldus

tableau can also be represented by a Weyl

tableau.162 As mention in Sec. 3.3.3, the

permissible Young shapes for U(n) irreps

have 2 columns at most, due to the Pauli

exclusion principle. The top row of the

Gel’fand pattern, [m]n, with 0 ≤ min ≤ 2,

specifies how many boxes are in each row,

i.e. m1n boxes in the first row, m2n boxes in

the second row and so on, while the same

information is provided by the an and bn

values of the Paldus tableau, i.e. an rows

with two boxes and bn rows with 1 box,

see Table 3.3. For components of the U(n)

irrep this shape is then filled with tokens

1, 2, . . . , n, representing the occupied spa-

tial orbitals. Starting from the first spatial

orbital i = 1 in a consecutive way, empty spatial orbital are omitted, doubly occupied

orbitals are put in the first and second column of the Weyl tableau. Orbitals which is

coupled in a way to increase the incremental total spin, ∆Si = Si − Si−1 = 1/2, are

inserted in the first column, while orbitals, which decrease the incremental total spin,

∆Si = −1/2, are collected in the second column, with the restriction Si ≥ 0, ∀i. An

example of this correspondence is shown in Tables 3.4 and 3.3 for a system of 2 electrons

in 3 spatial orbitals for S = 0 and S = 1.
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As indicated above, starting from the ”vacuum” 0’th row i = 0, there are four possible

ways of coupling a spatial orbital based on the group chain (3.25). Paldus identified the

different possibilities in terms of the difference vectors ∆xi = xi − xi−1, with x = a, b, c

and the four possible ways are shown in Table 3.5, where the same restriction Si ≥ 0, ∀i ap-

plies.

Table 3.5: Four possible ways of cou-
pling an orbital i.

di ∆ai ∆bi ∆ci ∆Ni ∆Si

0 0 0 1 0 0

1 0 1 0 1 1/2

2 1 -1 1 1 -1/2

3 1 0 0 2 0

The step-value di in Tab. 3.5 is given by di = 2∆ai−
∆ci + 1 and the collection of all di into the step-

vector d representation is the most compact form

of representing a CSF, with the same storage cost

as a Slater determinant. One can create all basis

function of a chosen irrep of U(n) by constructing

all possible distinct step-vectors |d〉 which lead to

the same top-row of the Paldus tableau (3.71) with

the restriction Si ≥ 0, ∀i.

As mentioned in Sec. 3.3.5, this choice of basis does

not fix the value of the ms quantum number.284 However, the Hamiltonian matrix ele-

ments are independent of ms, and thus any allowed value of ms can be assumed. However,

the value of ms can be fixed by a permissible choice of an irrep of the spin unitary group,

U s(2).233

3.4 The Graphical Unitary Group Approach (GUGA)

The graphical unitary group approach (GUGA) of Shavitt282,284 is based on this step-

vector representation and the observation that there is a lot of repetition of possible rows

in the Paldus tableaux specifying the CSFs of a chosen irrep of U(n). So, instead of all

possible Paldus tableaux, Shavitt suggested to just list the possible sets of rows in a table,

called the distinct row table (DRT). The number of possible elements of this table is given

by282

NDRT = (a+ 1) (c+ 1)

(
b+ 1 +

d

2

)
− d(d+ 1)(d+ 2)

6

=

(
N

2
− S + 1

)(
n− N

2
− S + 1

)(
2S + 1 +

d

2

)
− d(d+ 1)(d+ 2)

6
, (3.75)

with d = min(a, c) = min(N/2−S, n−N/2−S), which is drastically smaller than the total

number of possible CSFs (3.72) and Slater determinants (1.38) (without any symmetry

restrictions) as seen in Fig. 3.4. Each row is identified by a pair of indices (i, j), with

i = aij + bij + cij being the level index, related to the orbital index∗ and j being the lexical

row index such that j < j′ if aij > a′ij or if aij = a′ij and bij > b′ij. A simple example of the

∗Remember that for n orbitals we will have tables with n rows.
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Table 3.6: Distinct row table for n = 3, N = 4 and S = 0.

a b c i j d0 d1 d2 d3 u0 u1 u2 u3

2 0 1 3 1 2 0 3 4 - - - -
2 0 0 2 2 0 0 0 5 1 0 0 0
1 1 0 2 3 0 5 0 6 0 0 1 0
1 0 1 2 4 5 0 6 7 0 0 0 1
1 0 0 1 5 0 0 0 8 4 3 0 2
0 1 0 1 6 0 8 0 0 0 0 4 3
0 0 1 1 7 8 0 0 0 0 0 0 4
0 0 0 0 8 - - - - 7 6 0 5

0 10 20 30
n

103

107

1011

1015

N
d
im

NSD

NCSF

NDRT

Figure 3.4: Number of total SDs (without
any symmetry restrictions), CSFs and
entries of the distinct row table (DRT)
for S = 0 and N = n as a function of n.

8

765

432

1

graph tail

graph head

Figure 3.5: Graph representing the DRT
of Table 3.6. The orange line corresponds
to the CSF |d〉1 = |3, 3, 0〉 and the green
line to |d〉2 = |3, 1, 2〉 in the step-vector
representation.

DRT of a system with n = 3, N = 4 and S = 0 is shown in Table 3.6. Relations between

elements of the DRT belonging to two neighbouring levels k and k − 1 are indicated

by the so called downward, ddk , and upward, udk , chaining indices, with dk = 0, 1, 2, 3.

These indices indicate the connection to a lexical row index in a neighbouring level by

a step-value dk, where a zero entry indicates an invalid connection associated with this

step-value. Given a DRT table any of the possible CSFs can be generated by connecting

distinct rows linked by the chaining indices.

This DRT table can be represented as a graph, see Fig. 3.5, where each distinct row

is represented by a vertex (node) and nonzero chaining indices are indicated by an arc

(directed edge). The vertices are labelled according to the lexical row index j, starting

at the unique head node at the top, which corresponds to the highest row (a, b, c). It

ends at the second unique null row (0, 0, 0), which is called the tail of the graph. Vertices

with the same i-value of Table 3.6 are at the same level on this grid. The highest i-value

is on top and the lowest at the bottom. Vertices also have left-right order with respect

to their ai value and vertices that share the same ai value are further ordered—still

horizontally—with respect to their bi value. With the above mentioned ordering of the
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Fig. 3.6: Graph representing the DRT
for a n = 6, N = 5 and S = 1

2 state.
The a and b values indicating the or-
dering in the graph are shown at the
top and the level index i is indicated
at the left. The different step-values d
connecting the nodes are shown for the
node 1 at the top. 32
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vertices according to their ai and bi values, the slope of each arc is in direct correspondence

to the step-value di, connecting two vertices. d = 0 corresponds to vertical lines, and the

tilt of the other arcs increases with the step-value di.

Each CSFs in the chosen irrep of U(n), is represented by a directed walk through the

graph starting from the tail and ending at the head, e.g. the green and orange lines in

Fig. 3.5, representing the states |d1〉 = |3, 3, 0〉 and |d2〉 = |3, 1, 2〉. Such a walk spans

n arcs (number of orbitals) and visit one node at each hierarchical level. There is a

direct correspondence between the Paldus tableau, Gel’fand patterns and directed walks

on Shavitt graphs for representing all possible CSFs in a chosen irrep of U(n).

A lengthy example. Consider a system with n = 6, N = 5 and S = 1
2
. The DRT of

this state has 32 distinct rows (omitted for brevity), while the total number of CSFs is

NCSF = 210. The graph representing this state is shown in Fig. 3.6, where the vertical

ordering according to the index i and the horizontal ordering according to the ai and bi

values is indicated.

3.4.1 Evaluation of Nonvanishing Hamiltonian Matrix Elements

Given the expression of the nonrelativistic spin-free Hamiltonian in (3.8) a matrix element

between two CSFs, |m′〉 and |m〉, is given by:

〈m′|Ĥ|m〉 =
∑
ij

tij〈m′|Êij|m〉+
1

2

∑
ij,kl

Vijkl〈m′|êij,kl|m〉. (3.76)
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The matrix elements, 〈m′|Êij|m〉 and 〈m′|êij,kl|m〉, provide the coupling coefficients be-

tween two given CSFs and tij and Vijkl are the integral contributions. They are inde-

pendent of the orbital shape and depend only on the actual coupling between the CSFs,

|m′〉 and |m〉, involved. Therefore, for a given set of integrals the problem of computing

Hamiltonian matrix elements is reduced to the evaluation of these coupling coefficients.

The graphical representation of CSFs has been proven a powerful tool to evaluate these

coupling coefficients thanks to the formidable contribution of Paldus, Boyle, Shavitt and

others.71,236,283

The great strength of the graphical approach is the identification and evaluation of non-

vanishing matrix elements of the excitation operators (generators) Êij, between two GT

states (CSFs), 〈m′|Êij|m〉. The generators are classified according to their indices, with

Êii being diagonal weight (W) and Êij with i < j being raising (R) and i > j lowering (L)

operators (or generators). In contrast to Slater determinants, Êij applied to |m〉 yields a

linear combination of CSFs |m′〉,

Êij |m〉 =
∑
m′

|m′〉 〈m′|Êij|m〉, (3.77)

with an electron moved from spatial orbital j to orbital i without changing the spin of

the resulting states |m′〉. They are called raising(lowering) operators since the resulting

|m′〉 will have a higher(lower) lexical order than the starting CSF |m〉.

The distance, S0, from min(i, j) − 1 to max(i, j), is an important quantity and is called

the range of the generator Êij. For the one-body term in (3.8) Shavitt282 was able to

show that the walks on the graph, representing the CSFs |m〉 and |m′〉, must coincide

outside of this range S0 to yield a non-zero matrix element. The two vertices in the DRT

graph, related to orbital i− 1 and j (with i < j) represent the points of separation of the

walks and they are named loop head and loop tail. And the matrix element 〈m′|Êij|m〉
only depends on the shape of the loop formed by the two graphs in the range S0, shown

in fig 3.7. Shavitt283 showed that for a raising generator the relations

N ′k = Nk + 1, b′k = bk ± 1 and S ′k = Sk ±
1

2
for k ∈ S0, (3.78)

between |m〉 and |m′〉 must be fulfilled to yield a nonzero matrix element. While for a

lowering generator (L) N ′k = Nk − 1 must be fulfilled. This allows two possible relations

between the vertices at each level in terms of Paldus array quantities depending on the

type of generator (R,L).

For raising generators R:

a′k = ak, b′k = bk + 1, c′k = ck − 1, → ∆bk = −1, (3.79)

a′k = ak + 1, b′k = bk − 1, c′k = ck → ∆bk = +1, (3.80)
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Fig. 3.7: Graphical representation
of a matrix element 〈m′|Êij |m〉 as
a loop shape created by two CSFs
|m′〉 and |m〉 on a Shavitt graph. 0
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where ∆bk = bk − b′k. And for lowering generators L:

a′k = ak − 1, b′k = bk + 1, c′k = ck → ∆bk = −1, (3.81)

a′k = ak, b′k = bk − 1, c′k = ck + 1 → ∆bk = +1. (3.82)

At each vertex of the loop in range k one of the relations (3.79-3.82) must be fulfilled for

the one-body matrix element to be non-zero.
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Fig. 3.8: Graphical representation of the ma-
trix element 〈030300|Ê25|010320〉 = −

√
2.

Based on the graphical approach, Shavitt283

showed that the matrix elements of the

generators Êij can be factorized in a prod-

uct, where each term corresponds to a seg-

ment of the loop in the range S0 and is

given by

〈m′|Êij|m〉 =

j∏
k=i

W (Qk; d
′
k, dk,∆bk, bk),

(3.83)

where bk is the b value of state |m〉 at level

k. W (Qk; d
′
k, dk,∆bk, bk) additionally de-

pends on the segment shape of the loop at

level k, determined by the type of the gen-

erator Qk = W,R,L, the step values d′k
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Figure 3.9: Nonzero segment shapes of a raising generator Êij . The numbers next to the
lines indicate the step-values d′ and d. R(R) correspond to the loop tail (head) segments
and R to shapes inside the generator range S0. ∆bk indicates the possible difference of
b′k and bk leading to nonzero matrix elements.

and dk and ∆bk = bk − b′k. The nonzero segment shapes for a raising (R) generator are

shown in Fig. 3.9. In Table 3.7 the nonzero matrix elements of the one-electron operator

Êij depending on the segment shape symbol, the step-values and the b-value are given in

terms of the auxiliary functions

A(b, x, y) =

√
b+ x

b+ y
, C(b, x) =

√
(b+ x− 1)(b+ x+ 1)

b+ x
. (3.84)

As an example, Fig. 3.8 shows the graphical representation of the matrix element

〈030300|Ê25|010320〉, with |m′〉 and |m〉 in their step-vector representation. Each segment

shape is obtained from Fig. 3.9 with the corresponding value from Table 3.7 and the

resulting matrix element is given as the product of them.

3.4.2 Two-Body Matrix Elements

The matrix elements of the two-body operators êij,kl are more involved than the one-body

operators, especially the product of singlet excitation generators, ÊijÊkl. Similar to the

one-electron operators, the GT states |m〉 and |m′〉 must coincide outside the total range

min(i, j, k, l) to max(i, j, k, l) for 〈m′|êij,kl|m〉 to be nonzero. The form of the matrix

element depends on the overlap range of the two ranges

S1 = (i, j) ∩ (k, l). (3.85)
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Table 3.7: Nonzero matrix elements of the one-body operator Êij in terms of the auxiliary
functions (3.84.

d′d W d′d R L d′d R L

00 0 01 1 1 10 1 1

11 1 02 1 1 20 1 1

22 1 13 A(b, 0, 1) A(b, 2, 1) 31 A(b, 1, 0) A(b, 0, 1)

33 2 23 A(b, 2, 1) A(b, 0, 1) 32 A(b, 1, 2) A(b, 2, 1)

R L

d′d ∆b = −1 ∆b = +1 ∆b = −1 ∆b = +1

00 1 1 1 1

11 -1 C(b, 0) C(b, 1) -1

12 -1/(b+ 2) - 1/(b+ 1) -

21 - 1/b - -1/(b+ 1)

22 C(b, 2) -1 -1 C(b, 1)

33 -1 -1 -1 -1

One possibility to calculate the matrix element would be to sum over all possible inter-

mediate states, |m′′〉,

〈m′|ÊijÊkl|m〉 =
∑
m′′

〈m′|Êij|m′′〉〈m′′|Êkl|m〉, (3.86)

but in practice this is very inefficient. For non-overlapping ranges S1 = ∅ the matrix

element just reduces to the product

〈m′|êij,kl|m〉 = 〈m′|ÊijÊkl|m〉 = 〈m′| Êij |m′′〉 〈m′′| Êkl |m〉 , (3.87)

where |m′′〉 must coincide with |m〉 in the range (i, j) and with |m′〉 in range (k, l). The

same rules and matrix elements as for one-body operators apply in this case. An example

of this is shown in the left panel of Fig. 3.10.

For S1 6= ∅, we define the non-overlap range

S2 = (i, j) ∪ (k, l)− S1, (3.88)

where the same restrictions and matrix elements as for one-body operators apply. In the

overlap range, S1, different restrictions for the visited Paldus tableau vertices p apply

for the matrix element to be nonzero. This depends on the type of the two generators

involved and were worked out by Shavitt.284 For two raising generators (RR) the following
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conditions apply

a′p = ap, b′p = bp + 2, c′p = cp − 2 → ∆bp = −2 (3.89)

a′p = ap + 2, b′p = bp + 2, c′p = cp → ∆bp = +2 (3.90)

a′p = ap + 1, b′p = bp, c′p = cp − 1 → ∆bp = 0. (3.91)

For two lowering generators (LL):

a′p = ap + 2, b′p = bp + 2, c′p = cp, → ∆bp = −2 (3.92)

a′p = ap, b′p = bp − 2, c′p = cp + 2 → ∆bp = +2 (3.93)

a′p = ap − 1, b′p = bp, c′p = cp + 2 → ∆bp = 0. (3.94)

And for a mixed combination of raising and lowering generators (RL)

a′p = ap − 1, b′p = bp + 2, c′p = cp − 1, → ∆bp = −2 (3.95)

a′p = ap + 1, b′p = bp − 2, c′p = cp + 1 → ∆bp = +2 (3.96)

a′p = ap, b′p = bp, c′p = cp → ∆bp = 0. (3.97)

Drake and Schlesinger,72 Paldus and Boyle,236 Payne247 and Shavitt and Paldus284 were

able to derive a scheme, where the two-body matrix elements can be computed as a

product of segment values similar to the one-body case (3.83)

〈m′|êij,kl|m〉 =
∏
p∈S2

W (Qp; d
′
p, dp,∆bp, bp)×

∑
x=0,1

∏
p∈S1

Wx(Qp; d
′
p, dp,∆bp, bp), (3.98)

where S1 and S2 are the overlap (3.85) and non-overlap (3.88) ranges defined above.

W (Qp; d
′
p, dp,∆bp, bp) are the already defined single operator segment values in Table 3.7

and Wx(Qp; d
′
p, dp,∆bp, bp) are new segment values of the overlap range (their comprehen-

sive listing can be found in [284] or in the Tables A.4 and A.5 in the Appendix A.2). There

is a sum over two products in S1, x = 0 corresponding to singlet coupled intermediate

states, with a nonzero contribution if ∆bp = 0,∀p ∈ S1 and x = 1, corresponding to a

triplet intermediate coupling. Examples of some of the new segment shapes Wx is given

in Fig. 3.11.

This product formulation of the two-body matrix elements in a spin-adapted basis is

the great strength of the graphical unitary group approach, which allows an efficient

implementation of the GT basis in the FCIQMC algorithm. The detail of the matrix el-

ement calculation in this basis are, however, tedious and will be omitted here for brevity

and clarity. More details on the matrix element calculation, especially the contribution

of the two-body term to diagonal and one-body matrix elements can be found in Ap-

pendix A.2.
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We are now at the end of the roadmap laid out in the Sec. 3.3 and the final missing

piece for a spin-adapted formulation of FCIQMC is the efficient implementation of these

ideas and a spin-conserving formulation of the excitation generation process, which will

be discussed in the following chapter.





4
Spin-Adapted Full Configuration Interaction Quantum

Monte Carlo

Having introduced the theoretical basis of the unitary group approach (UGA) and its

graphical extension (GUGA) to permit a mathematically elegant and computationally

efficient incorporation of the total spin symmetry in form of the Gel’fand-Tsetlin basis,

here we will present the actual implementation of these ideas in the FCIQMC framework,

termed GUGA-FCIQMC As mention in Chapter 3, a successful spin-adapted implemen-

tation will come with the benefits of Hilbert space size reduction—leading to a more effi-

ciently sampled compact wavefunction—, elimination of spin-contamination—improving

convergence of the projective FCIQMC technique—and the possibility to target states

with a specific total spin—resolving (near-)degeneracies of different spin sectors–and thus

allowing the sampling of states, which may not accessible for the SD-based FCIQMC

method, due to the projective nature of the algorithm.∗

Fundamentally, the three necessary ingredients for an efficient spin-adapted formulation

of FCIQMC are:

(i) Efficient storage of the spin-adapted basis

(ii) Efficient excitation identification and matrix element computation

(iii) Symmetry adapted excitation generation with manageable computational cost

The first point is guaranteed with the UGA, since storing CSFs and SDs amounts to

the same memory requirement with CSFs represented in the step-vector representation.

The efficient excitation identification is rather technical and explained in the Appendix

A.1. All that we need to know here is, although the determination if two CSFs are

connected by a single application of Ĥ is more involved than for SDs, it is possible to

do it efficiently. The matrix element computation is based on the product structure

of the one- (3.83) and two-body (3.98) matrix elements derived by Shavitt283 explained

in Sec. 3.4.1 and presented in more detail in Appendix A.2. Concerning point (iii), as

mentioned in Sec. 2.3.8, symmetry adaptation in FCIQMC is most efficiently implemented

at the excitation generation step, by only creating symmetry allowed excitations. For

∗For example, if a high spin state is the true ground state of system, this precludes the calculation of
lower spin states on the normal FCIQMC algorithm, since any long-time projection leads to the high-spin
ground state solution.

87
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the continuous SU(2) spin symmetry this is based on Shavitt’s DRT and the restriction

for nonzero matrix elements in the GUGA derived in Sec. 3.4.1. This, in addition to

the formulation in a spin-pure GT basis, ensures the total spin quantum number S is

conserved in a FCIQMC calculation.

The remainder of this chapter is organized as follows:

In Section 4.1 the spin-conserving excitation generation based on the GUGA in FCIQMC

in discussed, using the example of single excitations. The concepts of the branching tree

and weights to ensure nonzero spin-conserving excitation with a favourable generation

probability is introduced. In addition the possibility of on-the-fly matrix element calcu-

lation during the excitation process is highlighted; a feature of utmost importance for the

efficient spin-adapted formulation. The extension of these concept for double excitations is

discussed in Section 4.2 and the important modification of the automated timestep adap-

tation based on histograms, which in the end allows the application of GUGA-FCIQMC

to realistic systems, is presented in Sec. 4.3. Section 4.4 is concerned with the results ob-

tained with the spin-adapted implementation. We present benchmark results and scaling

analysis for the nitrogen atom and dimer, the one-dimensional hydrogen chain and the

Hubbard model in real- and momentum-space formulation. These studies demonstrate

the applicability of GUGA-FCIQMC far beyond the previously possible 16 electrons and

to highly multireference systems with up to 30 open-shell orbitals. At last results—not

obtainable prior to this implementation—for the spin gap of the cobalt atom and the elec-

tron affinity of scandium are presented. Section 4.5 contains a conclusion of the major

findings and gives an outlook for further work on this method.

4.1 Excitation Generation: Singles

The concept of efficient excitation generation in the spin-adapted GT basis via the GUGA

will be explained in detail by the example of single excitations. Although more complex,

the same concepts apply for generation of double excitation, explained in Sec. 4.2.

In contrast to excitation generation for SDs, there are now two steps involved for a CSF

basis. The first, being the same as in a formulation of FCIQMC in Slater determinants,

is the choice of the two spatial orbitals i and j, with probability p(i) p(j|i). As men-

tioned in Sec. 2.3.8, this should be done in a way to ensure the generation probability to

be proportional to the Hamiltonian matrix element involved. However, here comes the

first difference of a CSF based implementation compared to a SD-based one. For Slater

determinants the choice of an electron in spin-orbital (i, σ) and an empty spin-orbital

(j, σ) is sufficient to uniquely specify the excitation |Dj〉 = a†j,σai,σ |Di〉 and calculate the

involved matrix element 〈Dj|Ĥ|Di〉. However, in a CSF basis, the choice of an occupied

spatial orbital j and empty or singly occupied spatial orbital i, only determines the type

of excitation generator Êij acting on an CSF basis state |m〉 and the involved integral
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contributions tij, Vikjk and Vikkj of the matrix element 〈n|Ĥ|m〉, see Eq. (3.76). To ensure

p(i|j) ∝ |tij + 1
2

∑
k∈occ(Vikjk − Vikkj)| the occupied orbital j and (partially) empty i are

picked in the same way as for SD, see Sec. 2.3.8, but with an additional restriction to

ensure Êij |m〉 6= 0 explained in Appendix A.3.

However, the choice of (i, j) does not uniquely determine the excited CSF as there are

multiple possible ones, since the action of Êij yields a linear combination of connected

|m′〉,
Êij |m〉 =

∑
m′

〈m′|Êij|m〉 |m′〉 .

As a consequence, the choice of spatial orbitals i and j does not determine the cou-

pling coefficient 〈m′|Êij|m〉 of the matrix element Hm′m. Optimally, for a given |m〉 and

generator Êij, the connected CSF |n〉 has to be created with a probability p(m′|m) pro-

portional to the coupling coefficient 〈m′|Êij|m〉. By ensuring p(j|i) is proportional to

the integral contributions and p(m′|m) to the coupling coefficients, the total spawning

probability

ps(m
′|m) = p(i) p(j|i) p(m′|m) (4.1)

will be proportional to the magnitude of Hamiltonian matrix element |Hm′m|. As men-

tioned in Sec. 2.3.8, the efficiency of the FCIQMC algorithm depends on the ratio of

the Hamiltonian matrix element |Hm′m| between two connected states and the probabil-

ity ps(m
′|m) to choose the excitation |m〉 → |m′〉, as the imaginary timestep ∆τ of the

simulation is adapted to faithfully account for all excitations

∆τ−1 ∝ |Hm′m|
ps(m′|m)

. (4.2)

In a primitive implementation, ∆τ is determined by the “worst-case” max |Hm′m/ps(m
′|m)|

ratio during a simulation. A less strict approach to this problem is discussed in Section 4.3.

Only choosing nonzero Êij |m〉 6= 0 and ensuring p(m′|m) is achieved by a branching tree

approach, to obtain one of the different possible walks on the Shavitt graph with nonzero

loop contributions with the starting CSF |m〉.

4.1.1 The Branching Tree

In the spin-adapted excitation generation, after a certain generator Êij is picked with a

probability p(i|j) based on the integral contributions of the Hamiltonian matrix element,

the type of generator is determined, raising (R) if i < j and lowering (L) if i > j.

One connecting single excitation is then chosen by looping from starting orbital min(i, j)

to max(i, j) and stochastically choosing a valid nonzero Shavitt graph, based on the

restrictions 3.79-3.82, mentioned in Sec. 3.4.1. As an example let’s have a closer look

at a chosen raising generator. As can be seen in the single segment value tables 3.7

there are 4 possible nonzero R matrix elements. Which can even reduce to 3, if bi = 0
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Table 4.1: Nonzero starting segments for R with the number of electrons N ′i = Ni + 1 in
all cases.

R R L L

di d′i ∆Si ∆bi dj d′j ∆bj−1
a di d′i ∆Si ∆bi dj d′j ∆bj−1

a

0 1 +1/2 −1 1 0 −1 1 0 −1/2 +1b 0 1 +1

0 2 −1/2 +1c 2 0 +1 2 0 +1/2 −1 0 2 −1

1 3 −1/2 +1b 3 1 +1 3 1 +1/2 −1 1 3 −1

2 3 +1/2 −1 3 2 −1 3 2 −1/2 −1c 2 3 +1

a Necessary ∆b value for a valid CSF.
b Here bi > 0 is ensured, due to di = 1.
c Only for bi > 0 otherwise S′i < 0 would be a non-valid CSF.

at the start of the loop, since then a d′i = 2 value would lead to a forbidden S ′i < 0

value. These starting segments are associated with a relative difference of the total spin

∆Si = Si(m
′) − Si(m) and ∆bi = bi(m

′) − bi(m) between the two CSFs |m〉 and |m′〉
at level i, as shown in Table 4.1. For certain step-values (di = 0 for raising and di = 3

for lowering generators) two possible excited CSFs with different ∆bi are possible. This

can be represented pictorially as elements of a branching tree, as seen in Fig. 4.1 for

raising generator, where the number in the boxes represent the step-value di of |m〉 and

the direction of the outgoing lines the ∆bi value to possible excited CSFs |m′〉. Left going

lines correspond to ∆bi = −1 and right going ones ∆bi = +1. The number above the

small dots represent the associated d′i value of |m′〉.

The intermediate contributions to the coupling coefficientsR/L, see Table 3.7, have similar

properties. Depending on the current ∆bk value of the excitation |m′〉 relative to |m〉
there are branching possibilities for singly occupied spatial orbitals in |m〉, corresponding

to possible spin-recouplings in the excitation range of Êij. An excitation with ∆bk−1 = −1

can branch at dk = 1 values, into d′k = 1 with ∆bk−1 = ∆bk = −1 or change the spin-

coupling to d′k = 2 accompanied by a change to ∆bk = +1. At empty or doubly occupied

orbitals only d′k = dk and ∆bk = ∆k−1 leads to nonzero excitations. These relations are

tabulated in Table 4.2 and pictorially represented in Fig. 4.1.

The possible single excitations of a given CSF can be represented by a branching diagram,

where each node is a successive element of dk and a left going branch represents a ∆bk = −1

value and a right going branch ∆bk = +1. The end value dj = 1 requires an incoming

∆bj−1 = −1 value, whereas dj = 2 requires ∆bj−1 = +1 to ensure ∆bj = 0 at the end

of the excitation, indicated by the directions of the ingoing lines of the elements at the

bottom of Fig. 4.1. For a raising generator both ∆bj−1 values are possible for dj = 3. The

restrictions on the end segments R/L are listed in Table 4.1 and pictorially represented

in Fig. 4.1. These restrictions are a direct consequence of the conservation of the total

spin quantum number S.

A very simple implementation to create a single excitation |m′〉 would be to loop from
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Figure 4.1: Branching tree elements of a one-body operator Êij .

orbital i to j and depending on the step-value dk of |m〉, at each orbital k ∈ (i, j) choose

one possible ∆bk path at random if there are multiple possible ones. However, this would

totally neglect that there are certain branching choices which would lead to a dead end,

due to incompatible end-segments R,L and would not relate the probability to create a

certain CSF |m′〉 to the magnitude of the generator matrix element. The restrictions on

the end segments R/L are listed in Table 4.1 and pictorially represented in Fig. 4.1. An

example of the excitation generation based on the branching tree is given in Fig. 4.2, for

the raising generator Ê26 acting on the CSF |m〉 = |1, 0, 1, 2, 0, 1, 0〉, moving an electron

from spatial orbital 6 to 2. The left panel of Fig. 4.2 shows this excitation in the Shavitt

graph form based on the DRT. The right panel shows the branching tree representation,∗

with ±1 indicating the ∆bk value associated to the possible branches. The orange path in

both the Shavitt graph and branching tree representation show one valid single excitation

|m′〉 of Ê26 |m〉. The above mentioned dead ends are indicated with dashed lines and

crossed out vertices in the right panel of Fig. 4.2.

As one can see the number of connected CSFs nm′ to |m〉 by a generator Êij depends

on the number of singly occupied orbitals ns within the excitation range (i, j) and grows

approximately as nm′ ≈ 1.6ns+2. The highest number of possible connected CSFs is given

for a starting segment R/L with two possible branches, exclusively alternating singly

occupied orbitals dk = {1, 2} in the excitation range with bk > 0 and an end-segment

R/L with nonzero contributions for both ∆bk = ±1. In this case the number of connected

∗With the orbitals from top to bottom now, as this is the usual representation of trees.
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Figure 4.2: (left) Example of different branching possibilities for a raising single excitation
Ê26 |1, 0, 1, 2, 0, 1, 0〉. (right) Branching tree form of the possible single excitation of
Ê2,6 |1, 0, 1, 2, 0, 1, 0〉.

CSFs is related to the Fibonacci series and given by the Fibonacci number

Nmax
S = Fn+2 =

bn−1
2
c∑

k=0

(
n− k − 1

k

)
. (4.3)

Calculating all of them would lead to an exponential wall for highly open-shell CSFs

|m〉, but since we only need to obtain one connected CSF in the excitation generation

of FCIQMC, this exponential scaling is not an immediate problem. However, since the

overall generation probability
∑

m′ p(m
′|m) is normalized to unity, a specific p(m′|m) will

be negligibly small for numerous possible excitations. Since the timestep is directly related

to this probability (4.2), a small p(m′|m) directly causes a lowering in the usable ∆τ in a

FCIQMC calculation.

Since this is a consequence of the inherent high connectivity of a spin-adapted basis,

systems with many open-shell orbitals are difficult to treat in such a basis. In general this

restricts common implementations of spin-eigenfunctions to a maximum of 18 open-shell

orbitals. However, similar to the avoidance of the exponential wall associated with the

FCI solution to a system, the stochastic implementation of the CSF excitation generation

in FCIQMC, avoids the exponential bottle-neck, caused by the high connectivity of a

CSF basis. In general, however, we do not have to deal with these large number of open-

shell orbitals in most quantum chemistry problems, since they are usually associated

with high-order excitations from the HF state. However, for systems in which a localised

basis is preferable the number of open-shell orbitals can be quite large, but due to the

stochastic nature of the spin-adapted FCIQMC, we are able to obtain results for the low-

spin eigenstates of systems with important low-energy states with up to 30 open-shell

orbitals, see Sec. 4.4.3 and 4.4.4.



4. Spin-Adapted Full Configuration Interaction Quantum Monte Carlo 93

4.1.2 Remaining Switches

Table 4.2: Nonzero intermediate R and L
segments.

dk d′k
∆bk−1 = −1 ∆bk−1 = +1

∆bk ∆bk

0 0 −1 +1

1 1 −1 +1

1 2 −1a -c

2 1 -c −1

2 2 −1 −1b

3 3 −1 +1

a bk > 0 is ensured due to dk = 1.
b Only possible if bk > 1.
c Not possible otherwise |∆bk| > 1.

To avoid ending up in incompatible dead-end

excitations it is convenient, for a given exci-

tation range (i, j), to determine the vector of

remaining switch possibilities sk(∆bk) for the

∆bk = ±1 branches. sk(∆bk) is the number of

dk′ = 1 for ∆bk = −1 and dk′ = 2 for ∆bk = +1

to come in k′ = k+1, . . . j−1 (with the already

mentioned restriction of bk′ > 1 for dk′ = 2 to

be a valid ∆bk = +1 switch)

sk(∆bk) =


∑j−1

l=k+1 δdl,1 for ∆bk = −1∑j−1
l=k+1 δdl,2 for ∆bk = +1.

(4.4)

The quantity sk(∆bk) can be used to decide if

a possible ∆bk branch is taken or not, depend-

ing on if it will end up in a dead-end of the

branching tree.

4.1.3 On-The-Fly Matrix Element Calculation

To pick the connecting CSF |m′〉 with a probability p(m′|m) relative to the magnitude

of the generator matrix element |〈m′| Êij |m〉| we have to investigate the matrix element

between a given CSF |m〉 and an excitation 〈m′| Êij |m〉. As mentioned in Sec. 3.4.1,

the coupling coefficient is calculable as a product of terms, which depend on the type of

excitation (lowering, raising) and is determined by the step-vector values dk, d
′
k, the bk

and the ∆bk associated to each level of the excitation

〈m′| Êij |m〉 =
∏

k=(i,j)

W (Qk; d
′
k, dk,∆bk, bk). (4.5)

One of the major advantages of the GUGA in FCIQMC is that this matrix element can be

calculated on-the-fly during the creation of the excitation. As one can see in Table 3.7

in Sec. 3.4.1, there is a relation between the matrix element amplitude and the number

of direction switches of ∆bk in the excitation range. Most product contributions are of

order O(1), except the elements related to a switch of ∆bk+1 ← −∆bk, which are of order

O(1/bk)

W (Qk; d
′
k, dk,∆bk, bk) =

O(1) for dk = d′k

O(b−1
k ) for dk 6= d′k.

(4.6)
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So for a higher intermediate value of bk, which in the end also means more possibly

pathways, it should be less favourable to change the current ∆bk value. In order to create

an excitation |m′〉 with a probability proportional to the coupling coefficient |〈m′| Êij |m〉|
this fact should be included in the decision of the chosen branch and is achieved by the

use of branch weights.

4.1.4 Branch Weights

It is possible to take into account the “probabilistic weight” of each tree branches at

a possible branching decision. As one can see in the left panel of Fig. 4.3, the starting

∆bi = ±1 branches each have on contribution of orderO(1). For each branching possibility

there is a resulting branch with opposite ∆b and weight of order O(b−1). However, it also

depends on the end-segment determined by dj, if a given branch can be chosen. The

following branch weights

ζ− = f(dj) +
sk(−1)

b
g(dj) +O(

1

b2
), ζ+ = g(dj) +

sk(+1)

b
f(dj) +O(

1

b2
) (4.7)

with

f(dj) =

0 if dj = 2

1 else
, g(dj) =

0 if dj = 1

1 else
(4.8)

where sk(±1) is the number of remaining switches (4.4), can be used to determine the

probability of each ∆b branch to be chosen. The right panel of Fig. 4.3 shows the influence

of the matrix element on the branching probabilities in the excitation range. By choosing

the ∆b = −1 with a probability p− = ζ−
ζ−+ζ+

at the start of an excitation and in the

excitation region choose to stay on the current ∆b branch according to

p±s =
bζ±

bζ± + ζ∓
, (4.9)

the overall probability to choose the specific excitation |m′〉 is given by

p(m′|m) = p−(i)

j−1∏
k=i+1

p±s (k). (4.10)

With this choice of branching probabilities it is possible to retain an almost linear ratio

between p(m′|m) and generator matrix elements 〈m′|Êij|m〉. Additionally, because of the

f(dj) and g(dj) functions and inclusion of the remaining switches (4.4) in Eq. (4.7), this

approach avoids coming to a dead-end and choosing invalid excitations.

An important note on the matrix element calculation of single excitations: there are

of course contractions of the two-body operator in Eq. (3.76), which contribute to the

matrix element of a single excitation 〈m′|Ĥ|m〉. These contractions have to be taken into
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Figure 4.3: (a) Scaling of one-body coupling coefficients with changes in ∆b along the
branching tree. (b) Future branch weights at branching possibility.

account in the “on-the-fly matrix element computation” and are explained in more detail

in Appendix A.2.2.

4.2 Excitation Generation: Doubles

The generation of double excitation in the GUGA formalism is more involved than single

excitations and the detailed background on matrix element computation and weighted

orbital choice is found in the Appendix A.2.2 and A.3.2 for conciseness of this manuscript.

Nevertheless, the general ideas, which are very similar to single excitations, see Sec. 4.1,

and also involve the concepts of the branching tree and weight and remaining switches,

are presented here.

Depending on the ordering of the involved spatial orbitals of the one- and two-body

generators, Êij and êij,kl, 30 different excitation types, involving different combinations

of lowering (L) and raising (R) generators, can be identified and are listed in Table 4.3.

Some of them are equivalent, in the sense that they lead to the same excitations, such

the 7 single excitation (0a-0g) in Table 4.3, which reduce to the two distinct raising

R→ R and lowering L→ L generators. The pictorial representation of these generators

are shown in Fig. 4.4, where the ordering of orbitals is from bottom to top and arrows

indicate the replacement of electrons. The two-body operators êij,kl, which contribute

to single excitations, (0c-0g) in Table 4.3, are already taken into single excitation matrix

element calculation, see Sec. 4.1 and Appendix A.2.2. These also include the single overlap

excitation (0b) and (0e) with two alike generator types.

Double excitation with a single overlapping index j but two different generators (1a) and

(1b) can be treated very similar to single excitations, with the same weighting functions

(4.7) and classification of remaining switches (4.4), but with a change of generator type

at the overlap site, L ↔ R. Double excitations with an empty overlap range S1 (3.85)

(3c0, 3d0, 3e0 and 3f0) can be calculated as the product of two single excitations (3.87),

see Sec. 3.4.2. However, e.g. for excitation (3c0), the two-body operators êij,kl and êkj,il

contribute to the same Hamiltonian matrix element. We made the decision to treat these
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Table 4.3: Distinct types of double excitations. i < j < k < l in all cases and eij,kl = ekl,ij
in mind.

Label Generator order Operator

0a R(i)→ R(j) Êij

0b R(i)→ RR(j)→ R(k) êij,jk

0c WR(i)→ R(j) êii,ij

0d L(i)→ L(j) Êji

0e L(i)→ LL(j)→ L(k) êji,kj

0f L(i)→WL(j) êji,jj

0g L(i)→W (j)→ L(k) êki,jj

1a L(i)→ LR(j)→ R(k) êji,jk

1b R(i)→ RL(j)→ L(k) êij,kj

1c R(i)→ RR(j)→ RR(k) êjk,ik

1d L(i)→ LL(j)→ LL(k) êki,kj

1e L(i)→ RL(j)→ RL(k) êjk,ki

1f R(i)→ LR(j)→ RL(k) êkj,ik

1g RR(i)→ RR(j)→ R(k) êik,ij

1h LL(i)→ LL(j)→ L(k) êji,ki

1i RL(i)→ RL(j)→ L(k) êij,ki

1j RL(i)→ LR(j)→ R(k) êji,ik

2a RR(i)→ RR(j) êij,ij

2b LL(i)→ LL(j) êji,ji

2c RL(i)→ RL(j) êij,ji

3a R(i)→ RR(j)→ RR(k)→ R(l) êjl,ik/êjk,il

3b L(i)→ LL(j)→ LL(k)→ L(l) êki,lj/êli,kj

3c0 R(i)→ R(j)→ R(k)→ R(l) êij,kl

3c1 R(i)→ LR(j)→ LR(k)→ R(l) êkj,il

3d0 L(i)→ L(j)→ L(k)→ L(l) êji,lk

3d1 L(i)→ RL(j)→ RL(k)→ L(l) êjk,li

3e0 R(i)→ R(j)→ L(k)→ L(l) êij,lk

3e1 R(i)→ LR(j)→ RL(k)→ L(l) êik,lj

3f0 L(i)→ L(j)→ R(k)→ R(l) êji,kl

3f1 L(i)→ RL(j)→ RL(k)→ R(l) êjl,ki
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Figure 4.4: The 30 different types of single and double excitations, where the equivalent
excitations are grouped together and reduce the number of distinct types to 21. The
indices correspond to the entries in Table 4.3.
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Fig. 4.5: An example of possible new branch-
ing tree elements for double excitations.
Vertical lines now indicate the ∆b = 0
branch, while left going lines in the over-
lap range correspond to ∆b = −2 and right
going ones to ∆b = +2.
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non-overlap excitations by using the corresponding two-body generators with a nonzero

overlap range S1, see Appendix A.1 and A.2.2 for more details.

For “proper” double excitations, we separate the excitation range

min(i, j, k, l)→ max(i, j, k, l) into the lower non-overlap range S2 below the overlap range

S1 and the upper non-overlap range S ′2 above S1, as depicted in Fig. 3.10 in Sec. 3.4.2.

We introduce the terminology of a full-start of mixed generators RL and alike generators

RR/LL, a semi-start corresponds to the segment types like RR or RL, a semi-stop

indicates generator combination like LL or LR and a full-stop is where both generators

end on the same orbital, e.g. LL or RL.

The excitation generation for doubles is again performed by choosing a valid path in a

branching tree with modified rules in the overlap range S1 of the double excitation. As

can be seen by the restrictions for nonzero two-body matrix elements, Eq. (3.89-3.97) in

Sec. 3.4.2, the allowed ∆b values in S1 are now ±2 and 0. This leads to new elements

of the branching tree in S1, which are shown by the example of alike raising and mixed

generators in Fig. 4.5, where vertical lines indicate the new ∆b = 0 branch, and left (right)

going lines in S1 correspond to ∆b = ±2. The rules for the intermediate elements RR,LL

and RL are the same for all combinations of generators. Only a short explanation on the

double excitation generation is given here, the interested reader can find a comprehensive

explanation in Appendix A.3.2.
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The calculation of the remaining switch possibilities (4.4) essentially are the same as

for single excitations, except they are calculated for each segment, S2, S1 and S ′2 of the

excitation separately. In S1 a ∆bk = −2 branch can switch at dk = 1, a ∆bk = +2 at

dk = 2 and the ∆bk = 0 branch at both open-shell step-values

sk(∆bk) =


∑

l>k∈S1
δdl,1 for ∆bk = −2∑

l>k∈S1
δdl,2 for ∆bk = +2∑

l>k∈S1
δdl,1 + δdl,2 = sk(−2) + sk(+2) for ∆bk = 0.

(4.11)

The remaining switches in S2 are calculated up until the index of the start of S1, as,

similar to single end segments, e.g. R, there are the restrictions for nonzero matrix

elements for semi-start segments, e.g. RL, to guarantee the total spin is conserved.

Similarly, for the end of the overlap range, depending on the step-value at e.g. LL, the

mentioned restrictions apply so the remaining switches (4.11) are calculated until the start

of S ′2.

As a side note: We do not take into account the b-value restriction for the switch possibil-

ities, since it does not influence the possible branches in a straight forward way. It would

be too complicated to take this effect into account thoroughly and since it only influences

low spin intermediate segments, Sk = bk/2 ≈ 0, and these are not the most complicated

type of excitations.

To relate p(m′|m) to the generator matrix element 〈m′|êij,kl|m〉 we again use branching

weights to determine which paths of the tree are chosen. For a full-start RL(i) into full-

stop RL(j) excitation the weights of the different ∆b branches in terms of the intermediate

b-values and remaining switch possibilities are

Σ
(k)
−2 = f(dj) +

sk(−2)

bk
+O(b−2

k ), (4.12)

Σ
(k)
+2 = g(dj) +

sk(+2)

bk
+O(b−2

k ), (4.13)

Σ0 = 1 +
1

bk
(sk(−2)g(dj) + sk(+2)f(dj)) +O(b−2

k ), (4.14)

with f(dj) and g(dj) given by Eq. (4.8). We bias towards the ∆bk = 0 branch at the start

of the excitation range

p0 =
Σ0

Σ0 + Σ±2

, (4.15)

depending if di = {1, 2} and weight to stay on the current ∆bk excitation branch in S1

with

p∆b =
bkΣ∆b

bkΣ∆b + Σ∆b

. (4.16)

For a full-start into semi-stop excitation, e.g. RL→ LR→ R, the weights of the branches
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in the overlap region S1 are given by

Σ
(k)
−2 = f(dj)ζ−1(j) +

sk(−2)

bk
[g(dj)ζ+1(j) + f(dj)ζ+1(j)] +O(b−2

k ), (4.17)

Σ
(k)
+2 = g(dj)ζ+1(j) +

sk(+2)

bk
[g(dj)ζ−1(j) + f(dj)ζ+1(j)] +O(b−2

k ), (4.18)

Σ
(k)
0 = f(dj)ζ+1(j) + g(dj)ζ−1(j) +

1

bk
[sk(−2)g(dj)ζ+1(j) + sk(+2)f(dj)ζ−1(j)] +O(b−2

k ),

(4.19)

where ζ±1(j) are the single weights (4.7) for the non-overlap region S ′2 at the end of the

excitation, evaluated with the bj and sj(±2) values at the semi-stop. The biasing function

towards a certain branch at the beginning of an excitation and to stay at a chosen ∆b

branch are the same as (4.15) and (4.16) and in the non-overlap region S ′2 the single

excitation weights and biasing factors (4.7, 4.9) apply.

The weighting functions in the non-overlap region S2 for a semi-start into full-stop exci-

tation, e.g. R(i)→ LR(j)→ RL(k), are given by

σ
(k)
−1 =f(dj)Σ0(j) + g(dj)Σ−2(j) +

sk(−2)

bk
[f(dj)Σ+2(j) + g(dj)Σ0(j)] +O(b−2

k ), (4.20)

σ
(k)
+1 =g(dj)Σ0(j) + f(dj)Σ+2(j) +

sk(+2)

bk
[g(dj)Σ+2(j) + f(dj)Σ0(j)] +O(b−2

k ), (4.21)

with Σx being the weights of the full-stop excitation (4.12) evaluated with the bj and

sj(±2) values at the start of the overlap region j. The biasing function for the start and

staying probabilities are the same as in the single excitation case (4.9) evaluated with σ±1

instead of ζ±1.

For a “full” double excitation, e.g. R(i) → RR(j) → RR(k) → R(l), the weights and

biasing functions for the first non-overlap S2 region i → j − 1 are the same as for the

semi-start into full-stop excitation (4.20), but evaluated with the full-start into semi-stop

weights Σx(4.17). In the overlap region S1, j → k − 1, the weights and biasing functions

are the same as for full-start into semi-stop excitations (4.17), where the f(dk), g(dk) and

ζ±1 functions are evaluated at the semi-stop index k now. And finally for the final non-

overlap region S ′2, k → l− 1, the weights and biasing functions for single excitations (4.7,

4.9) apply.

By using this biasing we ensure to create a valid spin conserving excitation, avoid ending

up in a dead-end of the branching tree and create excitations with a probability p(m′|m)

proportional to the coupling coefficient magnitude |〈m′|êij,kl|m〉|. The used weight func-

tions are set up before an excitation in terms of the bk and remaining switch possibilities

with, if necessary, the precomputed switch possibilities for the remaining overlap and

non-overlap contributions and ∆b conditions. So it is not necessary to recompute the

whole setup at each step of the excitation. The computational effort to set up this weight

objects, as it needs the information of the remaining switches is O(n), in the worst case of
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an excitation spanning the whole orbital range. Results on the increase in computational

effort of the GUGA-FCIQMC method compared to the SD based implementation can be

found in Sec. 4.4.5.

4.3 Histogram based Timestep Optimization

Due to the increased connectivity of CSFs compared to SDs the generation probability, pij,

to spawn a new walker on state |Dj〉 from an occupied CSF |Di〉 is in general much lower

in the GUGA-FCIQMC method compared to the original method. An efficient sampling

of the off-diagonal Hamiltonian matrix elements and stable dynamics of a simulation

demand the quantity ∆τ−1|Hij|/pij to be close to unity. In the original determinant-based

FCIQMC algorithm this is ensured by a dynamically adapted timestep ∆τ(t), taking on

the value of the “worst-case” pij/|Hij| ratio encountered during a simulation.
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Fig. 4.6: Histogram of |Hij |/pij for the
determinant- and CSF-based FCIQMC
method for N2 at the equilibrium geome-
try in a cc-pVDZ basis set. Both the opti-
mized (orange) and unoptimized GUGA
(black) results are shown.

However, due to the large amount of possi-

ble connections between CSFs, this causes the

timestep to drop dramatically, if we chose this

approach for the GUGA-FCIQMC. At the same

time a tiny spawning probability pij means,

these problematic excitation only happen a mi-

nuscule fraction of times compared to more

“well-behaved” excitations. However, through

the timestep, the global dynamics of all the

walkers are affected by possibly only one ill-

sampled excitation with a large |Hij|/pij ratio.

The optimized excitation generation mentioned

in the sections above, ameliorates this issue,

but still cannot avoid the inherent “connectiv-

ity problem” of a CSF based implementation.

If we store all |Hij|/pij of all successful exci-

tation attempts in a histogram of certain bin

width, we can see that the majority of exci-

tations are well represented by the optimized

generation probability, see Fig. 4.6.

The SD based method has a fast exponential decaying tail. This is the reason the “worst-

case” timestep adaptation did not cause any problems for the original FCIQMC imple-

mentation. The GUGA implementation on the other hand, especially in the unoptimized

version, has a very slow decay and much larger maximum |Hij|/pij ratios, over 10000 in

the N2 example shown in Fig. 4.6 (not displayed for clarity). The optimized CSF excita-

tion scheme, explained above, greatly improves the pij to |Hij| relation, but expectedly
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Table 4.4: Automatically obtained timesteps for an SD- and GUGA-based (optimized
and vanilla) simulation of N2 at equilibrium distance in a cc-pVDZ basis. Results for the
“worst-case” optimization ∆τw and for the integrated histogram based optimization ∆τh
covering 99.99% of all excitations.

∆τw ∆τh ∆τh/∆τw

SD 5.59 · 10−3 6.20 · 10−3 1.11

GUGA vanilla 4.78 · 10−5 8.62 · 10−5 1.80

GUGA optimized 5.20 · 10−5 1.12 · 10−3 21.50

GUGA van. / GUGA opt. 0.92 0.08

SD / GUGA opt. 107.51 5.55

behaves worse than the SD based method. The timestep obtained with the “worst-case”

optimization are given in Table 4.4.

To avoid this hampering of the global dynamics by a few ill-behaved excitations, we im-

plemented a new automated timestep adaptation by storing the |Hij|/pij ratios off all

successful excitation attempts in a histogram, and setting the timestep ∆τ to ensure

∆τ |Hij|/pij ≤ 1 for a certain percentage of all excitations. The results of this “histogram-

tau-search” are listed in Table 4.4 for a SD based and unoptimized (vanilla) and optimized

GUGA-FCIQMC implementation for simulations of the nitrogen dimer at equilibrium ge-

ometry in a cc-pVDZ basis. For an SD-based implementation there is not much difference

between the two approaches. Similar, for the vanilla GUGA implementation, due to the

slow decaying tail in the histograms, see Fig. 4.6. There is a two order of magnitude

difference between the SD-based and the unoptimized GUGA-based timestep, which in

practice would make the GUGA-FCIQMC implementation useless. However, with the op-

timized CSF excitation generation, the histogram-based ∆τh-adaptation yields a timestep

two orders of magnitude larger than the “worst-case” ∆τw-optimization. The obtained

∆τh is still twice as large as in the SD-based FCIQMC, but due to a smaller Hilbert

space size, and possibly faster convergence for spin-degenerate systems, this makes the

GUGA-FCIQMC applicable for real systems.
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4.4 Results from the Spin-Adapted FCIQMC Ap-

proach

We tested and benchmarked the applicability of the spin-adapted FCIQMC approach via

the graphical unitary group approach against other quantum chemistry methods on the

nitrogen atom, the nitrogen dimer, a one-dimensional hydrogen chain and the Hubbard

lattice model in a real- and momentum-space basis. The scaling of the implementation is

analysed for these systems and compared against the original, Slater determinant based

FCIQMC method. Finally, the spin-adapted approach is used to calculate the spin gap of

the cobalt atom and the electron affinity of scandium, both of which are not obtainable

with the original determinant based FCIQMC approach.

4.4.1 Nitrogen Atom

The dissociation energy of the nitrogen molecule N2 for a long time has been a test case

for the capabilities of quantum chemical methods.2,51,348 There is a large change in the

correlation energy as the triple bond of N≡N is stretched and finally broken. This is

accompanied by a change of the electronic structure from single-reference-like to highly

multiconfigurational.

We first investigated the problem of the constituent nitrogen atom N. The ground state

configuration of N is 1s22s22p3 with the 3 electrons in the p-shell forming a S = 3/2 quartet
4So state. The first excited state is the S = 1/2 2Do doublet, 2.384 eV above the ground

state,95,171 with spin-orbit effects neglected. This setup of a half-integer high-spin ground

state with low-spin excited state is the prime playground of the GUGA-FCIQMC method.

Previous spin-adapted implementations in FCIQMC, using half-projected and projected

Hartree-Fock (HPHF) states,302 are only applicable to an even number of electrons. At

the same time, restricting the total ms quantum number to target an excited state only

works if the low-spin state is the ground state with excited states being high-spin, since

the high-spin ground state also contains contributions of energetically lower ms states,

causing the projective FCIQMC to converge to the latter one.

We prepared all-electron ab-initio Hamiltonians with Molpro349,350 for N in a cc-pVnZ

basis set, with n = D, T, Q, 5 and 6. The maximal symmetry point group in Molpro

is D2h and thus the much larger SO(3) symmetry of N gets reduced to degenerate sets

of irreps of D2h. The S = 3/2 quartet with singly occupied 2p orbitals belongs to the

irrep Au. While the S = 1/2 doublet splits into one Au state with three open-shell 2p

orbitals and three states belonging to B1u, B2u and B3u with one doubly occupied and

one open-shell 2p orbital, see Fig. 4.7.

We calculated the quartet-doublet, 4So− 2Do, spin-gap with the spin-adapted i-FCIQMC
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Fig. 4.7: Schematic orbital dia-
gram of nitrogen 1s22s22p3 for the
doublet (S = 1/2) and quartet
(S = 3/2) states. Au and Biu,
i = 1, 2, 3, represent the irrep of
D2h from the reduction of SO(3)
symmetry.

1s

2s

2px 2pz 2py

S = 3/2 S = 1/2

Au Au B1u/B2u/B3u

method (GUGA-FCIQMC) for basis sets up to cc-pV6Z and compared our results to

unrestricted coupled cluster singles and doubles with perturbative triples ((U)CCSD(T))

and FCI calculations up to cc-pVTZ obtained with Molpro164–167 and experimental re-

sults.95,171 The CCSD(T) calculations are based on restricted open-shell Hartree-Fock268

(ROHF) orbitals, which for the S = 1/2 state are only possible to be done for the Biu,

i = 1, 2, 3, states. Although GUGA-FCIQMC calculations for the Biu irreps yield the

same results as for the S = 1/2 Au state, the CCSD(T) results are far off the FCI results

and the experimental gap, due to the multi-reference character of these states.

The results are given in Table 4.5 with a complete basis set (CBS) extrapolation given by

a two-parameter inverse cube fit

E(n) = ECBS +
A

n3
(4.22)

using n = T, Q and 5. The GUGA-FCIQMC CBS results shows excellent agreement with

the experimental value within chemical accuracy. Fig. 4.8 shows the energy of the 4So

and 2Do state versus the cardinal number n of the basis set cc-pVnZ (left) and versus n−3

(right). The solid lines represent the fit (4.22) to the data and the FCI results up to cc-

pVTZ show perfect agreement with the i-FCIQMC results. Fig. 4.9 shows the difference of

the calculated spin gap of the nitrogen 4So and 2Do state, obtained with GUGA-FCIQMC

and CCSD(T), to the experimental value95,171 as a function of the cardinal number of the

basis set n (left) and the inverse cube n−3 (right). The solid lines are the inverse cube

fit to the n = T,Q, 5 data points. The GUGA-FCIQMC results converge to the correct

experimental value, while the CCSD(T) calculations are not able to obtain the correct

result, due to the multiconfigurational character of the 2Do excited state.

We also calculated the ionization potential (IP) of the nitrogen atom in the CBS limit with

GUGA-FCIQMC and compared our results to CCSD(T) calculations and experimental

data. The ground state of the N+ cation is the S = 1 triplet 3P0 state. The results

from GUGA-FCIQMC and CCSD(T) calculations up to cc-pV6Z basis set are shown

in Table 4.5. Since CCSD(T)164–167 can treat both the 4So and 3P0 well, coupled cluster

results and GUGA-FCIQMC CBS limit values, using n= Q, 5 and 6, agree within chemical

accuracy with experimental values.
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Table 4.5: Spin gap 2Do − 4So and ionization potential (IP) 3P0 − 4So of the nitrogen
atom obtained with all-electron GUGA-FCIQMC and CCSD(T)165,166 calculations for
different basis set sizes cc-pVnZ, n = 2, 3, 4, 5, 6 (2 = D, 3 = T, 4 = Q) and CBS limit
extrapolations (4.22) compared with experimental results.82,95,171 Energies are given in
atomic units.

2Do − 4So spin gap N+ 3P0 - N 4So IP

n CCSD(T) GUGA-FCIQMC CCSD(T) GUGA-FCIQMC

2 0.1061699 0.099951(11) 0.5216483 0.5215711(23)

3 0.1013301 0.0923719(90) 0.5310023 0.5310210(83)

4 0.0994312 0.0896661(73) 0.5333069 0.5333855(25)

5 0.0986498 0.0885878(67) 0.5341573 0.534204(12)

6 0.0983705 0.0881762(69) 0.5344735 0.5345070(62)

CBS 0.097950(35) 0.0875830(80) 0.534987(43) 0.534971(13)

Experiment 0.08746(37) 0.5341192(15)

∆E 0.01034(40) 0.00003(38) 0.000868(46) 0.000852(16)
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Figure 4.8: Energy of the 4So and 2Do state of the nitrogen atom versus cardinal number
of the basis set cc-pVnZ obtained with GUGA-FCIQMC compared with CCSD(T)165,166

and FCI164,167,349,350 results. The solid lines represent the inverse cube fit, Eq. (4.22) to
n = T, Q and 5 and the dashes lines show the CBS limit results.
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Figure 4.9: GUGA-FCIQMC and CCSD(T)165,166,349,350 energy difference of the nitrogen
4So and 2Do state to the experimental value95,171 vs. the cardinal number (left) and
inverse cube (right) of the cardinal number n of the basis set obtained. The solid lines
are the inverse cube fit to the n = T,Q, 5 data points. The dashed lines and n−3 = 0
point indicate the CBS limit result. FCI results are obtained with Molpro.164,167

4.4.2 Nitrogen Dimer Binding Curve

The breaking of the strong triple bond of N2 is accompanied by a change of single-reference

to multiconfigurational character of the electronic structure and the concomitant strong

electron correlation effects pose a difficult problem for quantum chemical methods. The

ground state of the nitrogen molecule at equilibrium bond distance, r0 ≈ 2.1a0, is a singlet
1Σ+

g . All bonding molecular orbitals (MOs) formed from the 2p atomic orbitals (AOs) of

the constituent N atoms are doubly occupied, see Fig. 4.10.

At large bond distances the ground states of the S = 0, 1, 2 and 3 states are degenerate,

since the coupling of the independent nitrogen atoms A and B, 4SoA⊗4 SoB, are all degen-

erate. We calculated the dissociation energy of N2 as the difference of the 1Σ+
g N2 ground

state at equilibrium geometry r0 = 2.074a0 and the 7Σ+
u state at r = 30a0 up to cc-pV5Z

basis set with four core electrons frozen and performed a CBS limit extrapolation using

Eq. (4.22) with the n = T, Q and 5 results. The results are shown in Table 4.6 with

CCSD(T) results obtained with Molpro165,166,349,350 and compared with experimental re-

sults,144 which are corrected to remove scalar relativistic, spin-orbit and core correlation

effects according to.43,87 We also checked the convergence of the r = 30a0 results with

the independent atom calculations with a frozen core and found excellent agreement and

the CCSD(T) and GUGA-FCIQMC results for the dissociation energy of N2 agree with

experimental values within chemical accuracy.

The energy as function of the bond length of the 1Σ+
g ground state of N2 in the cc-

pVDZ basis with a frozen core and comparison with available FCI and all-electron DMRG
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N2 Dissociation energy | Eh
n CCSD(T) GUGA-FCIQMC

2 0.3184752 0.3198257(42)

3 0.3448342 0.345412(26)

4 0.3551440 0.355565(55)

5 0.3587423 0.358984(49)

CBS(TQ5) 0.362603(47) 0.362797(53)

Experiment 0.362700(10)

∆E -0.000097(57) 0.000097(63)

Tab. 4.6: Frozen-core GUGA-FCIQMC
N2 dissociation energy for in-
creasing cardinal number n of the
cc-pVnZ basis set compared to
CCSD(T)165,166,349,350 and experi-
mental results,43,87,144 corrected for
scalar relativistic, spin-orbit and core
correlation effects. The CBS limit is
obtained with Eq. (4.22) for the n =
T, Q and 5 data points.

Table 4.7: N2 ground state energy with frozen core compared to FCI and all-electron
DMRG results51 for various bond distances in a cc-pVDZ basis set. Energies in atomic
units.

r | a0 EFCI GUGA-FCIQMC ∆EFCI DMRG all-e− ∆EDMRG

2.118 -109.278339 -109.278301(32) 0.000038(32) -109.282157 0.0038553(13)

2.4 -109.238397 -109.238354(40) 0.000043(40) -109.241886 0.0035321(14)

2.7 -109.160305 -109.160273(26) 0.000032(26) -109.163572 0.0032993(13)

3.0 -109.086209 -109.086181(37) 0.000028(37) -109.089375 0.0031937(14)

3.6 -108.994906 -108.99486(16) 0.00005(16) -108.998052 0.0031928(26)

4.2 -108.966950 -108.966913(79) 0.000037(79) -108.97009 0.0031768(18)

results51 is shown in Table 4.7. There is excellent agreement with FCI results and a

consistent energy difference of ∆Efc ≈ 0.0034Eh to the all-electron calculations.

2sA

2pA

2sB

2pB

σg

σ∗u

πu

σg

π∗g

σ∗u

Fig. 4.10: Schematic energy diagram of the N2 atomic and
molecular orbitals. Note, due to sp-mixing, the σg MO
formed from the 2p atomic orbitals is higher in energy than
the πu orbital at equilibrium.

The spin-resolved binding

curves in a cc-pVDZ basis of

all degenerate states at disso-

ciation are shown in Fig. 4.11.

Those are the ground state
1Σ+

g , and the excited triplet
3Σ+

u , quintet 5Σ+
g and septet

7Σ+
u . At r = 6a0 the 4 states

are degenerate within chem-

ical accuracy, < 1 kcal/mol.

The right panel of Fig. 4.12

shows the lowest singlet and

triplet states between r =

1.0Å and r = 2.25Å, com-

pared with the experimental

binding curve shown on the left. The “tower of states” at the 1Σ+
g equilibrium geom-
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Fig. 4.11: Energy vs.
bond distance of the de-
generate states of N2

at dissociation in a cc-
pVDZ basis set. Inte-
grals were created with
Molpro.349,350
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etry r0 = 1.121Å at the cc-pVDZ basis level compared with the experimental order

(see107,108,193,216) is

r = 2.118a0 : 1Σ+
g <

3Σ+
u <

3Πg <
3∆u <

1Πg <
3Σ−u <

1∆u <
1Σ−u <

3Πu,

Exp. : 1Σ+
g <

3Σ+
u <

3Πg <
3∆u <

1Πg <
3Σ−u <

1Σ−u <
1∆u <

3Πu,

with excellent agreement with the experimentally observed ordering, except for the high-

lying 1∆u and 1Σ−u states, which are in reversed order. At other bond distances the correct

term ordering is not completely captured within a cc-pVDZ basis set, but the general

structure closely resembles the experimental results, as can be seen in Fig. 4.12.

Another benefit of the spin-adapted FCIQMC method is the possibility to calculate ex-

cited states belonging to the same total spin symmetry sector with the approach explained

in Sec. 2.3.6. Although this is not necessary for the spin resolved nitrogen binding curve,

since the states of same spin belong to different point group symmetry sectors. Thus,

utilizing the discrete spatial symmetry, explained in Sec. 2.3.8, suffices to resolve excited

states within the same spin symmetry sector in this case.



4
.

S
p

in
-A

d
a
p

te
d

F
u

ll
C

o
n

fi
g
u

ra
tio

n
In

te
ra

c
tio

n
Q

u
a
n
tu

m
M

o
n
te

C
a
rlo

109

1.00 1.25 1.50 1.75 2.00 2.25

r | Å
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Figure 4.12: Experimental binding curve, taken and modified from [107,193,199] of N2 compared with the spin-resolved results obtained with the
spin-adapted FCIQMC in a cc-pVDZ basis set. (Permission to reproduce this figure has been granted by Elsevier and AIP Publishing.)
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Figure 4.13: Level diagram of the hydrogen chain. Dominant excitation in an ordered
basis are indicated with arrows above and in an unordered basis with arrows below.

4.4.3 One-Dimensional Hydrogen Chain

To further benchmark the GUGA-FCIQMC method we applied it to a linear chain of

L equidistant hydrogen atoms124 recently studied to test a variety of quantum chemical

methods.214 Using a minimal STO-6G basis there is only one orbital per H atom and the

systems resembles a one-dimensional Hubbard model122,142,240,241 with long-range interac-

tion. By employing larger basis sets more features of real materials are captured. Studying

a system of hydrogen atoms removes complexities like core electrons or relativistic effects

and thus is an optimal benchmark system for quantum chemical methods.

For large equidistant separation of the H atoms a localized basis with singly occupied

orbitals centred at each hydrogen is more appropriate than a HF orbital basis. Thus,

this is an optimal difficult benchmark system of the GUGA-FCIQMC method, since the

complexity of a spin-adapted basis depends on the number of open-shell orbitals, which

is maximal for this system. Particularly targeting the low-spin eigenstates of such highly

open-shell systems poses a difficult challenge within a spin-adapted formulation. This

situation is depicted schematically in Fig. 4.13.

We calculated the S = 0, 1 and 2 (only S = 0 for L = 30) energy per atom up to L = 30 H

atoms in a minimal STO-6G and cc-pVDZ basis (only for L = 10) at the equilibrium bond

distance r0 = 1.8 a0
214 and at the stretched r = 3.6 a0 geometry and compared it with

DMRG50,52,280,354 and MRCI+Q214 results. The results are shown in Table 4.8, where we

see excellent agreement within chemical accuracy with the reference results. At the equi-

librium bond distance, r0 = 1.8 a0, the use of HF orbitals is beneficial, since the electronic

structure has a strong single-reference character. At the stretched, r = 3.6 a0, geometry,

however, the use of a localized basis, obtained with the default Boys-localization in Mol-

pro’s LOCALI routine for the STO-6G basis set, is more suitable than an HF orbital basis.

However, this represents the “worst-case” scenario of a spin-adapted implementation, es-

pecially when targeting the low-spin solutions of such highly open-shell systems, as the

possible spin-recouplings, and thus the computational effort in general, depend strongly on

the number of singly occupied orbitals in the wavefunction expansion. We studied this sys-

tem to show that we are able to treat systems with up tp 30 open-shell orbitals. Due to the

stochastic nature of the FCIQMC excitation generation we are able to correctly calculate

the ground state energy of the S = 0, 1 and 2 spin states. An important fact is the order

of the orbitals though. Similar to the DMRG method it is most beneficial to order the or-
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Table 4.8: Energy per site E for an hydrogen chain for different number L of H atoms,
bond lengths r and total spin S in a STO-6G basis set compared with DMRG50,280 and
MRCI+Q reference results.214 For L = 10 also cc-pVDZ results are shown.

L r | a0 S Basis Eref | Eh GUGA-FCIQMC ∆E | Eh
10 1.8 0 sto-6g -0.54243854 -0.54243629(87) -0.00000225(87)
10 1.8 1 sto-6g -0.52970810 -0.52970356(53) -0.00000454(53)
10 1.8 2 sto-6g -0.49001220 -0.49001410(35) 0.00000190(35)

10 1.8 0 cc-pVDZ -0.56141048 -0.5613849(21) -0.0000256(21)
10 1.8 0 cc-pVDZ -0.561486a -0.5613849(21) -0.000101(10)
10 1.8 1 cc-pVDZ -0.55131875 -0.5512561(42) -0.0000627(42)
10 1.8 2 cc-pVDZ -0.52065930 -0.520620(13) -0.000039(13)

10 3.6 0 sto-6g -0.48187008 -0.48186924(88) -0.00000084(88)
10 3.6 1 sto-6g -0.48079321 -0.4807873(10) -0.0000059(10)
10 3.6 2 sto-6g -0.47755076 -0.47755056(95) -0.00000020(95)

10 3.6 0 cc-pVDZ -0.51239171 -0.5123632(21) -0.0000285(21)
10 3.6 1 cc-pVDZ -0.51117613 -0.5111597(69) -0.0000164(69)
10 3.6 2 cc-pVDZ -0.50747105 -0.5074480(58) -0.0000231(58)

20 1.8 0 sto-6g -0.54129388 -0.5412255(14) -0.0000684(14)
20 1.8 1 sto-6g -0.53781131 -0.5376748(88) -0.0001365(14)
20 1.8 2 sto-6g -0.52702418 -0.5269256(90) -0.0000986(90)

20 3.6 0 sto-6g -0.48197897 -0.48194178(35) -0.00003719(35)
20 3.6 1 sto-6g -0.48168308 -0.4816776(22) -0.0000055(22)
20 3.6 2 sto-6g -0.48076572 -0.4807632(15) -0.0000026(15)

30 1.8 0 sto-6g -0.54098959 -0.5402611(63) -0.0007285(63)
30 3.6 0 sto-6g -0.48202026 -0.4808580(43) -0.0011623(43)
a MRCI+Q reference result.214

bitals according to their overlap, since the number of possible spin recouplings depends on

the number of open shell orbitals in the excitation range. If we make a poor choice in the

ordering of orbitals, excitations between physically adjacent and thus strongly overlapping

orbitals are accompanied by a large number of possible spin-recouplings in the excitation

range, if stored far apart in the list of orbitals. This situation is depicted in Fig. 4.13.
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Fig. 4.14: S = 0 ground state wavefunction co-
efficients |ci| of the L = 10, r = 3.6a0 H-chain
with ordered and unordered localized orbitals.

This is also reflected in the ground state

wavefunction expansion, where an opti-

mal ordering of the orbitals is reflected by

a stronger single reference character, see

Fig. 4.14. The localized cc-pVDZ basis cor-

responds to orthogonalized atomic orbitals

and all one- and two-electron integrals were

computed with Molpro.349,350
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4.4.4 The Hubbard Model

In this section results for the Hubbard model, introduced in Sec. 1.4, obtained by the

spin-adapted FCIQMC method via the unitary group approach are presented. There are

two important formulations of the Hubbard model. In general the hopping strength t

is chosen as the energy scale of the system and only the relative strength of the kinetic

hopping and on-site Coulomb term U/t is the defining parameter of the model. For small

ratios of U/t the Hubbard model shows a metallic behaviour and thus a formulation in

a momentum space basis via a Fourier transformation is beneficial. For large on-site

repulsion U compared to the hopping strength t, U/t � 1, a real-space basis is more

appropriate. Both cases are discussed in this section.

The Hubbard model in the real-space basis

As a reminder, the single-band Hubbard model122,142,143,154 with nearest-neighbour hop-

ping t and on-site repulsion U is given by

Ĥ = −t
∑
〈i,j〉,σ

a†iσajσ + U
∑
i

ni,↑ni,↓, (4.23)

in the real-space formulation. Electrons can hop between nearest-neighbour sites 〈i, j〉
with strength t and interact purely locally if they are on the same site via the Coulomb

interaction U . This is shown schematically for a 2D 18-site system in Fig. 4.15. The sign

of U determines, if we look at the repulsive (U > 0) or attractive (U < 0) model. In

terms of the unitary group generators Eq. (4.23) takes the very simple form

Ĥ = −t
∑
<i,j>

Êij +
U

2

∑
i

êii,ii. (4.24)

Fig. 4.15: Schematic
representation of a
two-dimensional 18-site
Hubbard model with
nearest neighbour hopping
t and on-site repulsion U .

This means only the action and matrix elements for single

generator Êij for nearest neighbours 〈i, j〉 have to be consid-

ered, which greatly simplifies the application of the GUGA-

FCIQMC method when applied to the real-space Hubbard

model, as there are no double excitations and also no contri-

bution to singles coming from the two-body operator. How-

ever, the efficiency of the GUGA implementation is tested to

its limit, since for systems with high on-site repulsion U ' 12,

where it is beneficial to use a real-space basis, almost all sites

are singly occupied in the most important CSF contributions

to the ground state wavefunction.

The Hubbard model in a real-space basis with large on-site

repulsion U/t can be compared to the stretched geometry of
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the hydrogen chain in a minimal basis, see Sec. 4.4.3. Similar

to the H-chain, and highly open-shell systems in general, the calculation of the low-spin

eigenstates pose a challenge, due to the vast amount of possible spin-recouplings within

a spin-adapted basis. Additionally, the ordering of the orbitals also plays an important

role in the Hubbard model, where orbitals should be stored next to their neighbours. In

one dimension this is easily doable, but already fails in the two-dimensional case.

If periodic boundary conditions and more than one dimensional systems are studied, even

the nearest neighbour hopping terms, correspond to excitations with large ranges |i− j|,
similar to problems DMRG277 faces for systems of higher dimension than one. For this

reason and to make analogies to the one-dimensional hydrogen chain we focused on the

1D Hubbard chain to study the applicability of the spin-adapted FCIQMC approach, but

also compare our results to the exactly diagonalizable two-dimensional 4×4 lattice.

The Hubbard model in the momentum-space basis

With a Fourier transformation of the operators

a†l,σ =
1√
L

∑
k

e−ik·l c†k,σ → Êlm =
1

L

∑
k,k′

e−i(l·k−m·k
′) Êkk′ , (4.25)

with system size L and the fermionic annihilation(creation) operators, c
(†)
k,σ, of an electron

in a state with momentum k and spin σ, the spin-free Hubbard Hamiltonian (4.24) can

be transformed to the momentum-space basis as

Ĥ =
∑
k

εkÊkk +
U

2L

∑
k,k′,q

êk+q,k;k′−q,k′ , (4.26)

with the dispersion relation ε(k) = −2t cos k. In the momentum space Hubbard model

(4.26) the one-body operator is diagonal and only double excitations have to be considered.

Due to momentum conservation certain excitation types of the GUGA formalism are

symmetry forbidden. The type 2a and 2b excitations listed in Table 4.3 are not possible

since this would imply k + q = k′ − q and k = k′, which is only possible if q = 0, which

would be a diagonal contribution. Additionally the type 1e, 1f 1i and 1j excitations in

Table 4.3 are not possible, since applying the momentum conservation criteria would lead

to a contradiction for the necessary different indices, e.g. type 1e: êjk,ki would imply

k′ = k + q with momentum conservation, which would imply j = i. So the only possible

exchange term is the fully symmetric type 2c excitation êij,ji = êk+q,k;k,k+q, with q 6= 0.

The momentum space Hubbard model with low interaction strength U/t can be compared

to the equilibrium geometry hydrogen chain in a minimal basis using HF orbitals, see

Sec. 4.4.3.
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Table 4.9: Energy per site E of the half-filled 1D-Hubbard chain for U/t = 2 in a
momentum-space basis and U/t = 12 in a real-space basis with periodic (PBC) and open
(OBC) boundary conditions and different total spin S values. Energies are given in units
of the hopping strength t and comparison with DMRG50,280 results are given

L U/t S BC Eref | t i-FCIQMC ∆E | t

10 2 0 PBC -0.86384156 -0.8638376(32) -0.0000040(32)

10 2 1 PBC -0.78699638 -0.787004(11) 0.0000073(110)

10 2 2 PBC -0.68347569 -0.6834803(43) 0.0000046(43)

10 12 0 PBC -0.22779184 -0.22778308(21) 0.00000876(21)

10 12 1 PBC -0.21409173 -0.2140549(10) -0.0000368(10)

10 12 2 PBC -0.17785459 -0.1778427(11) -0.0000119(11)

10 12 0 OBC -0.21130895 -0.2113058(10) -0.0000031(10)

10 12 1 OBC -0.20070058 -0.2006914(32) -0.0000092(32)

10 12 2 OBC -0.16892931 -0.1689216(31) -0.0000077(31)

20 2 0 PBC -0.84299369 -0.842875(47) -0.000119(47)

20 2 1 PBC -0.83684320 -0.836635(29) -0.000208(29)

20 2 2 PBC -0.79716782 -0.797168(75) 0.000055(75)

20 12 0 PBC -0.22575066 -0.2257440(40) -0.0000067(40)

20 12 1 PBC -0.22222905 -0.222187(12) -0.000042(12)

20 12 2 PBC -0.21228724 -0.212233(12) -0.000054(12)

20 12 0 OBC -0.21808186 -0.21807886(32) -0.00000300(32)

20 12 1 OBC -0.21516665 -0.2151468(11) -0.0000198(11)

20 12 2 OBC -0.20614436 -0.2061172(20) -0.0000271(20)

Results on the Hubbard model

We calculated the energy per site of the half-filled L = 10 and L = 20 site Hubbard

chain for U/t = 2 in a momentum-space basis with periodic boundary conditions (PBC)

and U/t = 12 in a real-space basis with PBC and open boundary conditions (OBC) for

a total spin of S = 0, 1 and 2. The results are given in Table 4.9 with comparison to

DMRG reference results, obtained with the spin-adapted BLOCK50,280 DMRG code. There

is excellent agreement with the reference results and as expected the OBC results are in

better agreement than the corresponding PBC calculations for L = 10 and 20 for U/t = 12,

due to the problematic large excitation range excitation occurring with PBC.

We also calculated the energy per site of the off half-filling two-dimensional 4×4 Hubbard

model with PBC at U/t = 16 with 15 electrons for S = 1/2, . . . , 13/2. The calculations

were performed with the original FCIQMC framework30 without the initiator approxima-

tion56 in a spin-adapted basis, since it has proven to perform well in the large U/t regime

of the real-space Hubbard model. The results are shown in Fig. 4.16 with comparison

the exact diagonalization (ED) results obtained with the Lanczos176 method.121 There is

good agreement of the GUGA-FCIQMC with the ED results.
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Fig. 4.16: Energy per site of the off half-
filling N = 15 4× 4 Hubbard models with
periodic boundary conditions at U/t = 16
versus the total spin S. Comparisons with
exact diagonalization results are given.121

4.4.5 Computational Effort and Scaling of GUGA-FCIQMC

To analyse the additional computational cost associated with the GUGA-based CSF im-

plementation in FCIQMC, we compare the time per iteration, titer, and timestep, ∆τ ,

with the original SD-based FCIQMC method for the systems (N, N2, hydrogen chain and

the Hubbard model in the real- and momentum space basis) mentioned above. Since

FCIQMC is formally linear-scaling with the walker number Nw
29 we removed the bias of

walker number differences by comparing the time per iteration and per walker.

The left panel of Fig. 4.17 shows the timestep ∆τ obtained with the histogram based

optimization, see Sec. 4.3, for N2 at r = 4.2 a0 vs. the cardinal number n of the cc-

pVnZ basis set. As expected the usable timestep in the SD-based simulation is higher

compared to the CSF-based calculation, with roughly twice the possible ∆τ . However,

rather surprisingly the difference of the two decreases with increasing basis set size. The

right panel of Fig. 4.17 shows the time per iteration and walker for the same simulations.

The additional computational cost of the GUGA implementation roughly doubles the

time per iteration compared to the original FCIQMC method. While there seems to be

a steeper increase with increasing basis set size for the CSF-based implementation, it is

nowhere near the formally O(n) cost, with n being the number of orbitals, mentioned in

Section 4.2. So in total, with twice the timestep and twice the time per iteration, the

spin-pure GUGA implementation amounts to a fourfold increase in computational cost

compared to the original SD-based FCIQMC method. ∗

To examine the scaling in more detail, a least-squares fit to the polynomial f(n) = a+b·nc,
with 3 parameters a, b and c, was performed on the available data points with n being the

cardinal number of the basis set. The lines in Fig. 4.17 represent this fit for the timestep

∆τ(n) and time per iteration titer(n), as a function of the cardinal number n of the basis

set. The results for the determinant- and CSF-based calculations are

∗All simulations for this comparison were performed on identical 20 core Intel Xeon E5-2680 nodes
with 2.8GHz clock rate, 20MB cache and 128GB memory.
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Figure 4.17: SD- and CSF-based results for N2 at r = 4.2a0 for cc-pVnZ basis sets, n =
D, T, Q, 5. (left) Time-step ∆τ adapted with the histogram-based optimization with an
integration threshold of 0.9999 and (right) time per iteration vs. the cardinal number of
the basis set. The results were obtained on identical 20 core Intel Xeon E5-2680 nodes
with 2.8GHz clock rate and with N tot

w = 100k. The lines are fits to the data explained
in the main text.

a b c δa δb δc

∆τ
SD: 1.25 · 10−4 3.53 · 10−2 -2.66 4.4 · 10−5 1.2 · 10−3 0.06

CSF: 1.05 · 10−5 3.95 · 10−3 -2.00 9.9 · 10−6 8.9 · 10−5 0.04

titer
SD: 1.14 · 10−7 5.04 · 10−9 2.74 1.4 · 10−8 2.0 · 10−9 0.23

CSF: 1.75 · 10−7 2.08 · 10−9 3.41 1.6 · 10−8 1.1 · 10−9 0.31

with one standard deviation errors of the fit parameters given. The scaling of the decrease

in the possible timestep ∆τ is almost less than a factor of n smaller in the CSF based

implementation and the increase of the time per iteration titer less than n larger compared

to the determinant based implementation. However, the combination of these two effects

causes the spin-adapted FCIQMC implementation to scale by an additional factor of

≈ O(n1.3) for this specific system, compared to the original SD-based FCIQMC method.

Table 4.10 shows the averaged timestep and time per iteration ratios between GUGA- and

SD-based simulations on the systems mentioned until now. Compared to the CSF-based

FCIQMC the maximum possible timestep in the original determinant based implementa-

tion is larger by a factor of 2.31 to 3.87 and the time per iteration is smaller by a factor

of 0.36 to 0.90. Although the timings for the nitrogen dimer indicated by the footnote a

in Table 4.10 should be taken with a grain of salt, as they are results from an older, less

optimized version of the spin-adapted implementation. The combination of these effects

result in a slow down by a factor of 2.8 to 5.2 of the spin-adapted FCIQMC method.
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System nsamples ∆τSD/∆τCSF δ∆τ tSD/tCSF δt

N 10 2.55 0.12 0.90 0.08

N2 9 3.87 0.48 0.75 0.05

N2
a 23 2.31 0.10 0.36 0.03

H-chain 8 -b -b 0.63 0.05

Hubbarda 34 -b -b 0.20 0.03

Hubbard 18 -b -b 0.67 0.10

a Older, less optimized version of the GUGA implementation
b No data available

Tab. 4.10: Averaged
timestep ∆τ and time
per iteration t ratios
of CSF- and SD-based
FCIQMC calculations
for various systems and
sample sizes nsamples.
The standard errors δt
and δ∆τ are also given.

4.4.6 3d Transition Metal Atoms

All the previous systems were studied to show the applicability of the spin-adapted

FCIQMC implementation based on the graphical unitary group approach and bench-

mark it against the original determinant based formulation, exact results and other

quantum chemical methods. However, except for the CBS limit results of the nitrogen

atom, all results could have been obtained with the original determinant based FCIQMC

method.

In this section we study the two transition metal atoms cobalt and scandium, and calcu-

late the spin gap of the ground state and low-lying excited states and electron affinities.

Both atoms have an odd number of electrons and thus the HPHF approach in the origi-

nal FCIQMC can not be applied. Additionally, as most open-shell transition metals, the

cobalt atom has a high-spin ground state, due to Hund’s rule. This prohibits the calcula-

tion of the spin-gap to low-spin excited states by restriction of the ms quantum number,

as inevitably these excited state calculations will converge to the high-spin ground state in

the projective procedure of FCIQMC. These systems are therefore the perfect playground

to show the capability of the spin-adapted FCIQMC approach, to calculate quantities

not obtainable with the original (spin-unprojected) method. We compare our results to

coupled cluster calculations, which are not so easily applicable, due to the multireference

character of the excited states of these systems.

Cobalt

The ground state electronic configuration of the neutral cobalt atom is [Ar]3s23p63d74s2

and is a quartet 4F state. We calculated the spin gap to the first doublet excited state 2F

with the [Ar]3s23p63d84s configuration with the GUGA-FCIQMC method. We employed

an ANO basis set3 with primitive contractions corresponding to a comparable VnZP basis

with n = D, T and Q and the full and completely uncontracted primitive ANO basis set.

The ANO molecular integral files were computed with Molcas.10 We also prepared ab-
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initio integrals with an augmented correlation consistent core-valence basis set with 2nd

order Douglas-Kroll scalar relativistic corrections264 aug-cc-pwCVnZ-DK (denoted as cc-

basis in Table 4.11) up to n = Q. The cc-basis molecular integrals were computed with

Molpro.349,350 We also performed 2nd order complete active space perturbation theory9,198

(CASPT2) calculation on the ANO basis set with Molcas and CCSD(T) calculation in

the cc-basis with Molpro.

Similar to the nitrogen atom, see Sec. 4.4.1, the odd number of electrons and high-spin

ground state to low-spin excited state setup makes previous spin-pure methods imple-

mented in FCIQMC not applicable. However, as the results in Table 4.11 show, the

GUGA-FCIQMC implementation is able to provide energies within chemical accuracy

close to the experimental result.171,249,313 At least the CBS limit extrapolation of the

two-point (VTZP and VQZP) inverse cube fitted (4.22) ANO-basis results are below 1

kcal/mol away from the experimental result. However, the good agreement with exper-

iment must be attributed to some beneficial error cancellation, due to both neglected

scalar relativistic and spin-orbit coupling effects. The CBS limit results using n = D, T

and Q from the cc-basis are approx. 0.003Eh ≈ 1.88 kcal/mol above the experimental

results, where the remaining error can be attributed to the neglected spin-orbit coupling

effects.

Similar to the spin gap of nitrogen 4.4.1 CCSD(T) is not able to provide correct results of

the doublet 2F state of cobalt. The CCSD(T) calculations are based on ROHF orbitals

and the valence electronic configuration of the 2F state, 3d84s, enforces the 4s orbital

to be singly occupied with all the d-electrons being in a closed shell conformation. This

obviously violates Hund’s rule and thus the CCSD(T) results give a too high energy for

the 2F state, as can be seen in Fig. 4.18.

The starting orbitals for the Co 2F and 4F calculation with FCIQMC were CASSCF131,225

orbitals with the 1s22s22p63s23p6 orbitals frozen, 9 active electrons in the active space

of 4s, 3d, 4p, 5s and 4d, CAS(9,15) and further orbitals being virtuals, see the left panel

of Fig. 4.19. The CASSCF calculations were performed with Molcas10 and Molpro.168,345

Similar to the nitrogen atom the SO(3) symmetry of Co is reduced to the D2h symmetry

implemented in Molpro and Molcas. We chose the B1g irrep for the 2F - and the Ag irrep

for the 4F -state.

Scandium

The electronic configuration of the neutral scandium doublet 2D ground state is

[Ar]3s23p63d4s2. The electron affinity of scandium is an interesting problem, as the elec-

tronic configuration of the ground state of the Sc− anion was experimentally—as a sur-

prise—determined86 to be [Ar]3s23p63d4s24p, with the additional electron occupying the

4p shell instead of the expected 3d2. Two bound states, a singlet 1Do and triplet 3Do,
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Fig. 4.18: Energy of the 4F and 2F states of
Co versus the cardinal number n of the cc-
basis, calculated with GUGA-FCIQMC and
CCSD(T)165,166 based on ROHF orbitals.

Table 4.11: GUGA-FCIQMC, CASPT210 and CCSD(T)349,350 results for the 2F − 4F
spin gap of Co in an ANO10 and cc-basis set349,350 compared with the experimental
values.171,249,313 CBS limit extrapolations were obtains with Eq. (4.22) with the data
points of basis sets in parentheses.

Co 2F − 4F spin gap | Eh
Basis set i-FCIQMC CASPT2 CCSD(T)

ANO-basis VDZP 0.04895(32) 0.04667

VTZP 0.04326(14) 0.04373

VQZP 0.03775(54) 0.03675

Full 0.03626(21) 0.03565

Primitive 0.03565

CBS(TQ) 0.03373(94) 0.03448(16)

cc-basis n = D 0.046448(88) 0.1057278

n = T 0.03855(22) 0.1054354

n = Q 0.03685(27) 0.1052032

CBS(DTQ) 0.03535(22) 0.1051967(92)

Experiment 0.032285183

∆EANO 0.00144(94) 0.00220(16)

∆ECC 0.00306(22) 0.0729115(92)
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Figure 4.19: Schematic orbital energy diagram of and ground state electron configuration
of the 4F state of cobalt (left) and the 1D state of the scandium anion (right). The
chosen active spaces for the CASSCF calculation are shown in orange (closed), green
(active) and blue (virtual).

were identified with no clear experimental consensus which one of the two is the ground

state of Sc−. Subsequent theoretical studies14,150 identified the singlet 1Do state as the

ground state of Sc−. However, more recent coupled cluster (CC) studies of the ionization

potentials and electron affinities (EA) of the 3d transition metals11,12,322 left out the EA

of scandium, due to the multiconfigurational character of the anion ground state. Nev-

ertheless, in [12] EA results of Sc obtained with the internally contracted multireference

averaged coupled pair functional (MR-ACPF) method96,347 in excellent agreement with

experiment were reported.

Similar to the already mentioned problems of the coupled cluster method for the 2Do state

of nitrogen and 4F state of cobalt, see Sec. 4.4.1 and 4.4.6 respectively, the 1Do state of Sc−

has two open-shell 3d and 4p orbitals coupled to a singlet. This makes the applicability of

ROHF based CCSD(T) problematic and combined with the multiconfigurational character

of the ground state causes CC to yield non satisfactory results.

We performed spin-adapted i-FCIQMC calculations for the 2D state of Sc and for the 1Do

and 3Do state of Sc− in an aug-cc-pwCVnZ-DK basis, n = D, T and Q, with CASSCF

orbitals. The 1s, 2s and 2p orbitals were closed, with an active space of 11 (for Sc) and

12 (for Sc−) electrons in the 3s, 3p, 3d, 4s, 4p and 5s orbitals, yielding a CAS(11,14) for

Sc and CAS(12,14) for Sc−, and the remaining orbitals as virtuals. The 1Do electronic

configuration, the orbital energy diagram and the chosen active space conformation is
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Table 4.12: Electron affinity (EA) of scandium and spin gap of the two bound states of
Sc− 1Do and 3Do obtained with GUGA-FCIQMC in an aug-cc-pwCVnZ basis compared
with experimental results86 (Exp.). The CBS limit result is obtained with Eq. (4.22)
using the n = T and Q results. The experimental 3Do values are not corrected for
spin-orbit effects. Energies are given in atomic units.

n 2D − 1Do EA 2D − 3Do EA Sc− 1Do − 3Do

2 0.007740(75) 0.000380(77) 0.007341(76)

3 0.00734(54) 0.002572(77) 0.00499(33)

4 0.00667(75) 0.002381(65) 0.00480(42)

CBS 0.0062(14) 0.00224(13) 0.00466(76)

Exp. 0.00695(74) 0.00154(74) 0.00540(147)

∆E 0.0008(21) -0.00070(86) 0.0007(22)

shown in the right panel of Fig. 4.19. Similar to the nitrogen 4.4.1 and cobalt 4.4.6 atom

the SO(3) symmetry is reduced to the available D2h point group symmetry in Molpro349,350

with which the integrals were produced. We chose the B1g irrep for the 2D scandium

ground state and the B1u irrep for the 1Do and 3Do state of Sc−. Although a recent we

found∗, using state-averaged orbitals of the degenerate set of 2Au, and Biu, i = 1, 2, 3,

irreps yields a more compact wavefunction expansion and faster convergence rates.

The EA of Sc relative to the 1Do and 3Do state of Sc− and the gap between the latter

two states, obtained with GUGA-FCIQMC is shown in Table 4.12. There is agreement

within 1 kcal/mol with the experimental values and in accordance to previous theoretical

studies12,14,150 we can definitely identify the singlet 1Do as the ground state of Sc−.

∗Too late to include in this manuscript.
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4.5 Conclusion and Outlook

In this chapter the implementation of a spin-adapted basis in form of the Gel’fand-Tsetlin

basis based on the unitary group approach in the FCIQMC method was presented. The

efficient excitation generation and matrix element evaluation directly in this basis, without

any reference to a Slater determinant formulation, is possible with the help of the graphical

unitary group approach. Utilising this basis the conservation of the total spin quantum

number in FCIQMC simulations is ensured, with the accompanying benefits of Hilbert

space size reduction, resolution of different—even degenerate—spin eigenstates and easy

calculations of spin gaps, otherwise not accessible.

The motivation behind this approach was to reduce the effective degrees of freedom and

allow a more compact description of problems with inherent total spin symmetry and

enabling the application of the FCIQMC method to more complex systems. Further-

more, as many chemical and physical processes depend on the delicate interplay of near-

degenerate—or at least close in energy—states of different spin symmetry, the possibility

to target specific spin states and obtain solutions without contamination of different sym-

metry sectors, is highly desirable. However, to be competitive compared to conventional

approaches, a very efficient implementation is necessary, due to the additional computa-

tional cost associated with the more complex internal structure of this basis compared to

Slater determinants.

The method was tested and benchmarked for the nitrogen atom, nitrogen dimer, one-

dimensional hydrogen chains and the single band Hubbard model. Excellent agree-

ment with exact results, where available, and other quantum chemical methods was ob-

served.

We found that the additional computational cost associated with the more complicated

and highly connected Hilbert space of CSFs is manageable and applications of this ap-

proach for systems with up to 30 open-shell orbitals was demonstrated; eradicating the

severe limitations of previous spin-adapted approaches in general and in FCIQMC in par-

ticular. Even more so, the problematic calculation of the low-spin eigenstates of highly

open-shell systems is affordable with this stochastic approach.

The validity of the approach was proven and the direct targeting of specific spin states is

possible; enabling to obtain results previously not accessible to the FCIQMC method.

These are gaps of high-spin ground and low-spin excited state systems with an odd

number of electrons and the excitation energies within an explicit spin symmetry sec-

tor. However, although the scaling is manageable, we did not observe the—initially ex-

pected—acceleration of convergence compared to the original SD based FCIQMC imple-

mentation. In this regard, it seems the benefits and drawbacks of this approach mutually

compensate each other.
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The method does not allow us to simulate larger systems. On the contrary, the additional

scaling with the number of spatial orbitals, starts to become relevant for large basis set

expansions, limiting the applicability, where the SD based implementation remains prefer-

able. The increased connectivity of a spin-pure basis reduces the generation probabilities

in the spawning step of the FCIQMC method and thus limits the possible timestep of a

simulation and causing stability issues in the sampling process.

In this regard, the scope of application of this method is rather to target specific, interest-

ing spin states, which allows a clearer chemical and physical interpretation of results. As

a consequence, more insight in chemical processes governed by the interplay of different

spin states is possible.

Along this line, we calculated, within chemical accuracy to experimental results, the

spin gap between the cobalt quartet 4F ground state and first doublet 2F excited state.

Due to the high-spin ground- and low-spin excited-state configuration, these results are

not obtainable by the conventional SD-based FCIQMC implementation. Additionally,

the electron affinity of scandium with agreement to experimental results within chemical

accuracy was determined, and the experimentally undetermined ordering of the scandium

anion singlet 1Do and triplet 3Do bound states was investigated. In agreement with

previous theoretical studies, our results indicate that the singlet is the ground state of

Sc− with a spin-gap energy of ∆ES−T = 2.92± 0.48 kcal/mol to the triplet bound state,

compared to the experimental value of ∆Eexp = 3.39± 0.92 kcal/mol, with undetermined

ordering of the states however.

Outlook

The spin-adapted FCIQMC method has also been applied to far larger systems as men-

tion in this manuscript. In collaboration with G. Li Manni, we studied the spin-gap of

iron-porphyrin (Fe(II)-Porphyrin) and iron-sulphur clusters with up to 32 electrons in a

CASSCF active space of 34 orbitals. Excellent agreement with previous theoretical stud-

ies183 were obtained for the Fe(II)-Porphyrin system, but due to time limitations these

results were omitted from this manuscript and are subject of future work.

Another great benefit of the spin-adapted formulation of FCIQMC is the possibility to cal-

culate excited states within a given spin symmetry sector with the approach in FCIQMC,

explained in Sec. 2.3.6. An association of a definite total spin S to an excited state result is

not possible in the determinant based FCIQMC implementation, neither by using HPHF

functions, see Sec. 3.2, nor by restricting the Ŝz eigenvalue. However, this advantageous

property of the spin-adapted FCIQMC formulation still needs further investigation.

The sampling of reduced density matrices (RDMs), see Sec. 2.3.5, in the spin-adapted

formulation based on the GUGA is unfortunately a highly non-trivial task. Although there

is no theoretical problem of density matrices in the unitary group formalism,115,238,251,287

from a practical standpoint there is. Due to the increased connectivity within a CSF basis
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and the possibility of generators with different spatial indices contributing to the same

density matrix element, see Sec. 3.4.1 and appendix A.2, there is a large overhead involved

in sampling RDMs in the spin-adapted FCIQMC method. However, we are optimistic

to solve these problems in due time, which would allow us to use GUGA-FCIQMC as

a spin-pure FCI solver in the stochastic CASSCF method.184 This would enable us to

solve active spaces of unprecedented size in a spin-pure fashion, extending even further

the applicability of the method.

Furthermore, the unitary group formalism is extendable to spin-dependent

operators,72,112–114,158–160,180,360 and an extension of the spin-adapted FCIQMC method

to this approach is currently investigated to enable us to study systems with spin-orbit

coupling and explicit spin dependence.

Along this line, another interesting problem to be investigated is the application of GUGA-

FCIQMC to the two-dimensional t-J model

Ĥt−J = −t
∑
〈i,j〉,σ

a†i,σaj,σ + J
∑
〈i,j〉

(
Ŝi · Ŝj −

ninj
4

)
(4.27)

and the Heisenberg lattice model

ĤH = J
∑
〈i,j〉

Ŝi · Ŝj + h
∑
i

Ŝzi , (4.28)

with the vector of spin operators acting on site i, Ŝi and ni = ni↑ + ni↓. Both can be

derived as effective low-energy models of Hubbard model (4.23) in the large U/t limit with

a suppression of doubly occupied sites. As the Coulomb repulsion U increases with fixed

hopping strength t, doubly occupied sites become very unfavourable energetically and thus

the important states in the ground state wavefunction have exclusively singly occupied

sites. In the limit of infinite U/t only hopping processes to empty nearest neighbour sites

and second order virtual hopping processes, resulting in spin-flips of nearest-neighbour

sites remain. The Heisenberg model is the special case of the t-J model at half-filling.

Since doubly occupied sites are projected out for these models, every site in the Heisenberg

model is either occupied by an ↑- or ↓-spin, which interact via nearest-neighbour spin flip

processes of strength J . In the less than half-filled t-J model, the spins are additionally

allowed to hop to empty nearest neighbour sites with the hopping strength t. The spin

operator components in (4.27) and (4.28) can be expressed as235

Ŝ
(k)
i =

1

2

∑
µ,ν=↑,↓

σ̂(k)
µ,νa

†
i,µai,ν (4.29)

in terms of the Pauli spin matrices σ̂k and fermionic creation and annihilation operators.

Especially the Heisenberg model, which contains only the vector of spin operators on site

i, Ŝi, should be an interesting system to be studied with a spin-adapted approach. With
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Eq. (4.29) the product Ŝi · Ŝj can be expressed as

Ŝi · Ŝj =
1

4
(ni↑ − ni↓)(nj↑ − nj↓)︸ ︷︷ ︸

Ŝzi ·Ŝzj

− 1

2

∑
σ

a†iσajσa
†
jσ̄aiσ̄︸ ︷︷ ︸

Ŝxi ·Ŝxj +Ŝyi ·Ŝ
y
j

, (4.30)

where the first term is diagonal in an Ŝz eigenbasis and the second term corresponds

to second order spin-flip processes between nearest-neighbour sites i and j. With the

observation

ÊijÊji =

(∑
σ

a†iσajσ

)
·

(∑
τ

a†jτaiτ

)
=
∑
σ

a†iσajσa
†
jσ̄aiσ̄ +

∑
σ

a†iσajσa
†
jσaiσ︸ ︷︷ ︸

=niσ(1−njσ)

(4.31)

Eq. (4.30) can be expressed as

Ŝi · Ŝj = Ŝzi · Ŝzj −
1

2
ÊijÊji +

∑
σ

niσ(1− njσ) (4.32)

in terms of unitary group generators and spin-dependent, but diagonal, operators Ŝzi and

niσ. With Eq. (4.32) the t-J and Heisenberg model can be expressed as

Ĥt−J =
∑
〈i,j〉

[
−tÊij + J

(
Ŝzi · Szj −

1

2
ÊijÊji +

∑
σ

niσ(1− njσ)− ÊiiÊjj
4

)]
(4.33)

ĤH = J
∑
〈i,j〉

(
Ŝzi · Szj −

1

2
ÊijÊji +

∑
σ

niσ(1− njσ)

)
+ h

∑
i

Ŝzi . (4.34)

Both the t-J and Heisenberg model have been implemented in our FCIQMC code

NECI,25 but application of the spin-adapted approach to them has to be further investi-

gated.





5
Explicitly Correlated Ansatz in FCIQMC

To simulate larger and more complex systems, we need to find means to compress the

relevant physical information stored in the wavefunction to allow a more efficient sam-

pling of it with the FCIQMC method. Various approaches exist to achieve this reduction

of degrees of freedom by explicitly taking into account some part of the correlation al-

ready in the initial Ansatz for the ground state wavefunction. Particularly for ab-initio

systems the huge many-body wavefunction expansions are to some part an artefact of de-

ficiencies of the underlying single-particle basis set in capturing the dynamic correlation

of electrons in close proximity. As mentioned in Sec. 1.6, the exact wavefunction has a

nondifferentiable behaviour, Kato’s cusp condition (1.18),156,229 at electron coalescence

r12 = 0. The struggle of basis sets, i.e. based on Gaussian type orbitals,∗ describing this

feature is one of the main reasons for the slow convergence of the correlation energy with

the basis set expansion size. Additionally, most high-level post-Hartree-Fock methods,

such as FCIQMC, have an unfavourable scaling with the basis set size, hence utilizing ex-

trapolation techniques is difficult and reaching the complete basis set limit is prohibitively

hard.

In Sec. 1.7.7 multiple quantum chemical approaches to ameliorate the unfavourable scaling

with the basis set size, by including explicit dependence on the interelectronic coordinate

r12 in the wavefunction Ansatz,145,146,296 were presented. The goal of each of these ap-

proaches is to obtain a highly compact form for the short-ranged wavefunction by explicit

inclusion of the interelectronic distance r12, which naturally describes the dynamic corre-

lation problem. Several of these approaches for ab-initio systems were implemented and

studied with the FCIQMC method.26,161,281

However, in this chapter we take a different approach and leave quantum chemistry mo-

mentarily aside. We exclusively focus on an explicitly correlated wavefunction Ansatz

for the two-dimensional, repulsive Hubbard lattice model, introduced in Sections 1.4 and

4.4.4.

∗Albeit their immense benefits of efficient integral evaluation.
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5.1 Nonunitary Similarity Transformations

Our goal is to perform an exact similarity transformation of the Hubbard model based

on the Gutzwiller Ansatz,38,122 where the correlation captured in the Ansatz introduces

novel three-body interaction terms in the transformed Hamiltonian. Due to the nonuni-

tarity of the transformation the resulting operator is not Hermitian any more, causing

the left- and right eigenvector to differ, which, however, induces a very compact form of

the right eigenvector, due to the suppression of energetically unfavourable double occu-

pancies.

This compression of the essential physical features of the wavefunction is especially desir-

able for stochastic approaches, where a compact description of the system facilitates the

sampling and thus allows the simulation of system sizes unreachable otherwise. Due to

its projective nature, the FCIQMC method is able to sample the right eigenvector even of

non-Hermitian problems and the stochastic approach enables an exact treatment of the

novel 3-body interaction without undue increase in computational cost.

The Hubbard model, introduced in Sec. 1.4 and presented in both the real- and momentum-

space formulation in Sec. 4.4.4 is revisited and discussed in more detail here.

The results in this chapter were obtained in collaboration with Hongjun Luo and Ali Alavi

and parts of the remaining chapter are included in the published article:69

Compact numerical solutions to the two-dimensional repulsive Hubbard model obtained via

nonunitary similarity transformations. Werner Dobrautz, Hongjun Luo and Ali Alavi,

Phys. Rev. B 99, 075119 (2019)

5.2 Introduction

The Fermionic two-dimensional Hubbard model122,142,154 with repulsive interactions is a

minimal model of itinerant strongly correlated electrons that is believed to exhibit ex-

traordinarily rich physical behaviour. Especially in the past thirty years, it has been

intensively studied as a model to understand the physics of high-temperature supercon-

ductivity observed in layered cuprates371 . Its phase diagram as a function of temperature,

interaction strength and filling includes antiferromagnetism, Mott metal-insulator tran-

sition, unconventional high TC superconductivity61 with d-wave pairing off half-filling,

striped phases, a pseudo gap regime, charge and spin density waves.272 Confronted with

such a plethora of physical phenomena, accurate numerical results are indispensable in

resolving various competing theoretical scenarios.

Unfortunately the numerical study of the 2D Hubbard model has proven extraordinar-

ily challenging, particularly in the off-half-filling regime with intermediate-to-strong in-

teraction strengths U/t = 4 − 12. Major difficulties include severe sign problems for
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quantum Monte Carlo (QMC) methods, whilst the 2D nature of the problem causes con-

vergence difficulties for density matrix renormalization group (DMRG)273,356,357 based

methodologies which have otherwise proven extremely powerful in 1D systems. Never-

theless, extensive numerical studies have been performed with a variety of methods, such

as variational,79,104,323,361,365 fixed-node,15,60,334 constrained-path auxiliary field53,54,373

and determinental336 QMC, dynamical134,134 and variational62,256 cluster approximations

(DCA/VCA), dynamical mean-field theory (DMFT)170,185 and density matrix renormal-

ization group (DMRG). Thermodynamic limit extrapolations have been carried out with

the aim of assessing the accuracy of the methodologies in various regimes of interaction,

filling factor and temperature.178,259,377 On the other hand each of these methods incur

systematic errors which are extremely difficult to quantify and there is an urgent need to

develop methods in which convergence behaviour can be quantified internally.

In chapter we present the idea instead of attempting a direct numerical attack on the

2D Hubbard Hamiltonian with a given technique, we ask if there is an alternative exact

reformulation of the problem, the solution of which is easier to approximate than that of

the original problem. If this is the case (and this is obviously highly desirable), it should

be demonstrable within the framework of a given technique, without reference to any other

method. The physical basis for any observed simplification should be transparent. Such an

approach turns out to be possible, at least for intermediate interactions strengths based,

on a Gutzwiller nonunitary similarity transformation of the Hubbard Hamiltonian.

The Gutzwiller Ansatz38,122 and Gutzwiller approximation123,221,340,370 are intensively

studied methods to solve the Hubbard model. The parameter of the Ansatz is usually opti-

mised to minimize the energy expectation value by variational Monte Carlo schemes118,140

based on a single Fermi-sea reference state. It has been long realized that the simple

Gutzwiller Ansatz misses important correlations,97,155,210 especially in the strong interac-

tion regime of the Hubbard model. More general, Jastrow-like,148 correlators, including

density-density44 and holon-doublon,192,344 have been proposed to capture more physical

features within the Ansatz. In addition, the Fermi-sea reference function have been ex-

tended to HF spin-density waves181 and BCS8 wavefunctions6,78,116,117,239,365,366 including

antiferromagnetic104,179 and charge order.141

An alternative strategy is to use a Gutzwiller correlator to perform a non-unitary similar-

ity transformation of the Hubbard Hamiltonian, whose solution can be well approximated

using a Slater determinant. Such an approach is reminiscent of the quantum chemical

transcorrelated method of Boys and Handy,34,35 as well as Hirschfelder,138 in which a

non-Hermitian Hamiltonian is derived on the basis of a Jastrow factorisation of the wave-

function.

This idea was applied by Tsuneyuki330 to the Hubbard model by minimizing the variance

of the energy based on projection on the HF determinant. Scuseria and coworkers342

and Chan et al.219 have recently generalized to general two-body correlators and more

sophisticated reference states, where the correlator optimisation was not performed in a
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stochastic VMC manner, but in the spirit of coupled-cluster theory, by projecting the

transformed Hamiltonian in the important subspace spanned by the correlators.

These methods have in common that they are based on a single reference optimisation

of the correlation parameters and thus the energy obtained is on a mean-field level. We

instead would like to fully solve the similarity transformed Hamiltonian in a complete

momentum space basis. We will use a single reference optimisation, based on projec-

tion,219,342 to generate a similarity-transformed Hamiltonian (non-Hermitian with 3-body

interactions), whose ground state solution (right eigenvector) will be using the projective

FCIQMC56 method.

The remainder of this chapter is organized as follows:

In 5.3 the derivation of the Gutzwiller similarity transformed Hubbard Hamiltonian is

recapped and the projective solution based on the restricted Hartree-Fock determinant

is presented. Additionally, analytic and exact diagonalization results, to illustrate the

influence of the transformation on the energies and eigenvectors are provided. In 5.4 the

necessary adaptations of the FCIQMC method for its application to the similarity trans-

formed Hubbard Hamiltonian in a momentum-space basis, named similarity transformed

FCIQMC(ST-FCIQMC) are discussed. In addition, the implications of the approach

to excited states calculation is expanded on. In 5.5 the ST-FCIQMC method is bench-

marked for the exact diagonalizable 18-site Hubbard model and ground- and excited-state

energies are presented. A huge increase in compactness of the right eigenvector of the

non-Hermitian transformed Hamiltonian is observed. Finally, results obtained with the

similarity transformed Hamiltonian for nontrivial 36- and 50-site lattices, at and off half-

filling with interaction strengths up to U/t = 4 are shown. In 5.6 a conclusion of our

findings is given and future applications for observables other than the energy and cor-

rect calculation of left and right excited state eigenvectors are discussed. Additionally,

the application of the method to other lattice models, especially the t-J and Heisenberg

model is discussed.

5.3 The Similarity Transformed Hamiltonian

We would like to solve for the ground state energy of the two-dimensional, single-band

Hubbard model122,142,154 with the Hamiltonian in a real-space basis

Ĥ = −t
∑
〈ij〉,σ

a†i,σaj,σ + U
∑
l

nl,↑nl,↓. (5.1)

a
(†)
i,σ being the fermionic annihilation(creation) operator for site i and spin σ, nl,σ the

number operator, t the nearest neighbour hopping amplitude and U ≥ 0 the on-site

Coulomb repulsion. We employ a Gutzwiller-type Ansatz42,122,221 for the ground state
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wavefunction

|Ψ〉 = gD̂ |Φ〉 = eτ̂ |Φ〉 , with (5.2)

τ̂ = ln gD̂ = J
∑
l

nl,↑nl,↓ and 0 ≤ g ≤ 1, (5.3)

where D̂ is the sum of all double occupancies in |Φ〉, which are repressed with

0 ≤ g ≤ 1→ −∞ < J ≤ 0.

In the Gutzwiller Ansatz, |Φ〉 is usually chosen to be a single-particle product wavefunc-

tion,98,122 |Φ0〉, such as the Fermi-sea solution of the non-interacting U = 0 system, or

other similar forms such as unrestricted Hartree-Fock spin-density waves,181 or super-

conducting BCS wavefunctions.78 The parameter J is usually optimised via Variational

Monte Carlo(VMC),370 minimizing the expectation value

EVMC = min
J

〈Φ0|eτ̂ Ĥ eτ̂ |Φ0〉
〈Φ0|e2τ̂ |Φ0〉

, (5.4)

see Sec. 2.2.1. In this work, however, |Φ〉 is taken to be a full CI expansion in terms of

Slater determinants

|Φ〉 =
∑
i

ci |Di〉 (5.5)

with which we aim to solve an equivalent exact eigenvalue equation

e−τ̂ Ĥ eτ̂ |Φ〉 = H̄ |Φ〉 = E |Φ〉 , with (5.6)

H̄ = −t
∑
<ij>,σ

e−τ̂ a†i,σaj,σ eτ̂ +U
∑
l

nl,↑nl,↓, (5.7)

H̄ denotes a similarity-transformed Hamiltonian. Eq.(5.6) is obtained by substituting

Eq. (5.2) as an eigenfunction Ansatz into Eq. (5.1) and multiplying with e−τ̂ from the

left, and due to [ni,σ, τ̂ ] = 0. The similarity transformation of Eq. (5.1) moves the com-

plexity of the correlated Ansatz for the wavefunction |Ψ〉 into the Hamiltonian, without

changing its spectrum. It is a nonunitary transformation, and the resulting Hamilto-

nian is not Hermitian. Such similarity transformations have been introduced in quantum

chemistry35,36,138 in the context of a Slater -Jastrow Ansatz, where it is known as the

transcorrelated -method of Boys and Handy. It was first applied to the Hubbard model by

Tsuneyuki.330 The transcorrelated method has been quite widely applied in combination

with explicitly correlated methods in quantum chemistry,196,197,281,364 with approxima-

tions being employed to terminate the commutator series arising from the evaluation of

e−τ̂ Ĥ eτ̂ .318,319 The explicit similarity transformation of the Hubbard Hamiltonian(5.1)

with a Gutzwiller(5.2)330,343 or more general correlator,219,342 which can be obtained with-

out approximations due to a terminating commutator series, has been solved on a mean-

field level.330 In the present work, we will not restrict ourselves to a mean-field solution,

but solve for the exact ground state of H̄ with the FCIQMC method.30,56
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5.3.1 Recap of the Derivation of H̄

Tsuneyuki330 and Scuseria et al.342 have provided a derivation of the similarity trans-

formed Hubbard Hamiltonian, based on the Gutzwiller and more general two-body cor-

relators, respectively. Their derivations result in a Hamiltonian expressed in real-space.

Here we go one step further and obtain an exact momentum space representation of the

similarity transformed Hamiltonian, which is advantageous in the numerical study of the

intermediate correlation regime. In this representation, the total momentum is an exact

quantum number, resulting in a block diagonalised Hamiltonian. This is computationally

useful in projective schemes, especially where there are near-degeneracies in the exact

spectrum close to the ground state, which can lead to very long projection times and be

problematic to resolve. Additionally, it turns out that even in the intermediate strength

regime, the ground state right eigenvector is dominated by a single Fermi determinant for

the half-filled system. This is in stark contrast with the ground state eigenvector of the

original Hubbard Hamiltonian, which is highly multiconfigurational in this regime.

As seen in Eq. (5.7) we need to compute the following transformation

F̂ (x) = e−xτ̂ a†i,σaj,σ exτ̂ (5.8)

which can be done by introducing a formal variable x and performing a Taylor expansion

(cf. the Baker-Campbell-Hausdorff expansion). The derivatives of (5.8) can be calculated

as

F̂ ′(0) = [ a†i,σaj,σ, τ̂ ] = J
∑
l

[ a†i,σaj,σ, a
†
l,σal,σ ]nl,σ̄ = Ja†i,σaj,σ (nj,σ̄ − ni,σ̄) ,

F̂ ′′(0) = [ [ a†i,σaj,σ, τ̂ ] , τ̂ ] = J [ a†i,σaj,σ(nj,σ̄ − ni,σ̄), τ̂ ] = J2ai,σaj,σ (nj,σ̄ − ni,σ̄)2 ,

F̂ (n)(0) = [ [ a†i,σaj,σ, τ̂ ] , . . . , τ̂ ] = Jnai,σaj,σ (nj,σ̄ − ni,σ̄)n , (5.9)

where σ̄ indicates the opposite spin of σ. With this closed form (5.9) the Taylor expan-

sion can be summed up as F̂ (1) = a†i,σaj,σ eJ(nj,σ̄−ni,σ̄) and Eq. (5.6) takes the final form

of330,342,343

H̄ = −t
∑
<ij>,σ

a†i,σaj,σ eJ(nj,σ̄−ni,σ̄) +U
∑
l

nl,↑nl,↓ (5.10)

Due to the idempotency of the (Fermionic) number operators, n2
i,σ = ni,σ, we have for

m ≥ 1:

(nj,σ − ni,σ)2m−1 = nj,σ − ni,σ, and (nj,σ − ni,σ)2m = nj,σ + ni,σ − 2ni,σnj,σ. (5.11)
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With Eq. (5.11) the exponential factor in Eq. (5.10) can be calculated as

eJ(ni,σ−nj,σ) =1 +
∞∑
m=1

J2m−1

(2m− 1)!
(nj,σ − ni,σ) +

∞∑
m=1

J2m

(2m)!
(nj,σ + ni,σ − 2ni,σnj,σ)

=1 + sinh(J) (nj,σ − ni,σ) + (cosh(J)− 1) (nj,σ + ni,σ − 2ni,σnj,σ)

=1 +
(
eJ −1

)
nj,σ +

(
e−J −1

)
ni,σ − 2 (cosh(J)− 1)ni,σnj,σ. (5.12)

With Eq. (5.12) we can write the final similarity transformed Hamiltonian as

H̄ = Ĥ − t
∑
<ij>,σ

a†i,σaj,σ

[ (
eJ −1

)
nj,σ̄ +

(
e−J −1

)
ni,σ̄ − 2 (cosh(J)− 1)ni,σ̄nj,σ̄

]
. (5.13)

Formulated in a real-space basis the additional factor in Eq. (5.13) is simply a nearest-

neighbour density dependent renormalization of the hopping amplitude. For large inter-

action U/t� 1, as already pointed out by Fulde et al.,155 the simple Ansatz (5.2) shows

the incorrect asymptotic energy behaviour, E ∼ −t2/(U lnU) instead of E ∼ −t2/U ,97,210

proportional to the magnetic coupling of the Heisenberg model for U/t � 1, due to the

missing correlation between nearest-neighbour doubly occupied and empty sites. The

Gutzwiller Ansatz does however provide a good energy estimate in the low to interme-

diate U/t regime. For these values of U/t the momentum space formulation is a better

suited choice of basis, due to a dominant Fermi-sea determinant and thus a single refer-

ence character of the ground state wavefunction. Thus, we transform Eq. (5.13) into a

momentum space representation with

a†l,σ =
1√
M

∑
k

e−ik·l c†k,σ, (5.14)

where M is the size of the system and c
(†)
k,σ the annihilation (creation) operator of a state

with momentum k and spin σ. The terms of Eq. (5.13) become

∑
<ij>,σ

a†i,σaj,σnj,σ̄ =
1

M

∑
pqk,σ

εp−k c
†
p−k,σc

†
q+k,σ̄cq,σ̄cp,σ, (5.15)

∑
<ij>,σ

a†i,σaj,σni,σ̄ =
1

M

∑
pqk,σ

εp c
†
p−k,σc

†
q+k,σ̄cq,σ̄cp,σ (5.16)

∑
<ij>,σ

a†i,σaj,σni,σ̄nj,σ̄ =
1

M2

∑
pqskk′,σ

εp−k+k′ c
†
p−k,σc

†
q+k′,σ̄c

†
s+k−k′,σ̄cs,σ̄cq,σ̄cp,σ, (5.17)

with εk being the dispersion relation of the lattice. The original Hubbard Hamiltonian in

k-space is

Ĥ = −t
∑
k,σ

εknk,σ +
U

2M

∑
pqk,σ

c†p−k,σc
†
q+k,σ̄cq,σ̄cp,σ. (5.18)

while the similarity transformed Hamiltonian in k-space is a function of the correlation
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parameter J

H̄(J) =− t
∑
k,σ

εknk,σ +
1

M

∑
pqk,σ

ω(J,p,k)c†p−k,σc
†
q+k,σ̄cq,σ̄cp,σ

+ 2t
cosh(J)− 1

M2

∑
pqskk′,σ

εp−k+k′c
†
p−k,σc

†
q+k′,σ̄c

†
s+k−k′,σ̄cs,σ̄cq,σ̄cp,σ, (5.19)

ω(J,p,k) =
U

2
− t
[(

eJ −1
)
εp−k +

(
e−J −1

)
εp
]
. (5.20)

Comparing to the original Hubbard Hamiltonian in k-space (5.18), H̄ (5.19) has a modified

2-body term and contains an additional 3-body interaction, which for k = 0 gives rise

to parallel-spin double excitations. These are not present in the original Hamiltonian.

As mentioned above, in contrast to other explicitly correlated approaches224 this is an

exact similarity transformation of the original Hamiltonian and does not depend on any

approximations. Hence, the spectrum of this Hamiltonian is the same as that of (5.1).

Unlike the canonical transcorrelation Ansatz of Yanai and Shiozaki364 which employ a

unitary similarity transformation, the resulting Hamiltonian (5.19) is not Hermitian (the

non-Hermiticity arising in the two-body terms), and hence its spectrum is not bounded

from below. Variational minimization approaches are not applicable. The left and right

eigenvectors differ, and form a biorthogonal basis
〈
ΨL
i

∣∣ΨR
j

〉
= 0 for i 6= j. Tsuneyuki

circumvented the lack of a lower bound by minimizing the variance of H̄

min〈ΦHF |
(
H̄ −

〈
H̄
〉)2|ΦHF 〉 (5.21)

to determine the optimal Jvar.

Projective methods such as the Power method,110 or a stochastic variant such as FCIQMC,30

can converge the right/left eigenvectors by multiple application of a suitable propagator,

without recourse to a variational optimisation procedure, and this is the technique we

shall use here. Since the matrix elements of (5.19) can be calculated analytically and

on-the-fly, the additional cost of the 3-body term is no hindrance in our calculations, and

we do not need to apply additional approximations, unlike other explicitly correlated ap-

proaches.362,363 While complicating the calculation of observables other than the energy,

due to the need to have both the left and right eigenvector of the now non-Hermitian

Hamiltonian (5.19), the difference between the left and right eigenvectors actually proves

to be beneficial for the sampling of the ground state wavefunction in the FCIQMC method.

This will be numerically demonstrated below in 5.3.3. As a side note, the use of more

elaborate correlators, like density-density44 or holon-doublon85,192,344 is no hindrance in

the real-space formulation of the Hubbard model and is currently being investigated,70

but in the momentum-space basis would lead to even higher order interactions and have

not been further explored.
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5.3.2 Optimisation of J and Analytic Results for the Hubbard

Model

As a starting point we optimise the strength of the correlation factor, controlled by the

single parameter J from the Ansatz (5.2) by projection. Projecting the Ansatz (5.2) on

the Hartree-Fock state 〈ΦHF | would yield us the energy EHF
J

〈ΦHF | e−τ̂ Ĥ eτ̂︸ ︷︷ ︸
H̄

|ΦHF 〉 = EJ , (5.22)

where as usual HF denotes the state with all orbitals with |k| ≤ kF being doubly occupied

and kF being the Fermi surface. And projecting onto the single basis of the correlation

factor219,342,343〈ΦHF | τ̂ † yields

〈ΦHF | τ̂ †H̄ |ΦHF 〉 = EHF
J 〈ΦHF |τ̂ †|ΦHF 〉, (5.23)

where
〈
τ̂ †
〉
HF
6= 0 only for k = 0 terms in the momentum space representation of τ̂

τ̂ =
J

M

∑
p,q,k,σ

c†p−k,σc
†
q+k,σ̄cq,σ̄cp,σ. (5.24)

Combining Eq. (5.22) and (5.23) yields〈
(τ̂ − 〈τ̂〉)† H̄

〉
HF

= 0, (5.25)

where the diagonal, k = 0, terms cancel∗. Eq. (5.25) needs to be solved to optimise J

based on a single determinant |ΦHF 〉. Eq.(5.25) is similar to the optimisation of coupled

cluster amplitudes.317 Eq. (5.25) can also be seen as a projection of the eigenvalue equa-

tion (H̄ − E) |ΦHF 〉 = 0 on the single basis of the correlation factor τ̂ . The remaining

contributing contractions (k 6= 0) of (5.25) of H̄ are

〈
τ̂ †H̄

〉
c

=
1

M2

∑
pqk,σ

np,σnq,σ̄(1− np−k,σ)(1− nq+k,σ̄)

×

{
ω2(J,p,k)︸ ︷︷ ︸

2-body

+2t
cosh J − 1

M
×
[
Nσ̄ (εp + εp−k)︸ ︷︷ ︸

3-body RPA

−
∑
s

(εp+q−s + εp−q−k+s)ns,σ̄︸ ︷︷ ︸
3-body exchange

]}
.

(5.26)

Equation (5.26) can be evaluated directly, or since τ̂ |ΦHF 〉 = cHF |ΦHF 〉 +
∑

i ci |Di〉
corresponds to all the double excitation on top of the Hartree-Fock determinant, it is

the sum of all the double excitation matrix elements with the Hartree-Fock determinant.

∗In the language of the coupled cluster approach an equivalent expression to Eq. (5.25) is 〈τ̂ †H〉c = 0,
where 〈. . .〉c denotes a cumulant expression over linked diagrams94 only.
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Table 5.1: Jopt obtained by solving Eq. (5.25) for the specific lattice sizes, fillings and
U/t values used in this manuscript. Jex is the value, which sets set the J-dependent
Hartree-Fock energy, EHFJ , to the exact energy, if available, or to the AFQMC reference
energies178,259,293,342 for larger systems.69

M U/t nel Jopt Jex eex eJ eJ/eex[%]
6 4 6 -0.67769 -0.74282 -0.61145 -0.56306 92.1
18 2 18 -0.27053 -0.28536 -1.32141 -1.31697 99.7
18 4 18 -0.52345 -0.57472 -0.95847 -0.92697 96.7
18 4 14 -0.55794 -0.62474 -1.13644 -1.09786 96.7
36 2 36 -0.30485 -0.45423 -1.15158 -1.09840 95.4
36∗ 2 36 -0.28683 -0.31783 -1.20831 -1.19904 99.3
36 4 36 -0.58521 -0.79141 -0.85736 -0.71675 83.6
36∗ 4 36 -0.55295 -0.65181 -0.87306 -0.81145 92.9
36∗ 4 24 -0.53570 -1.13399 -
36† 4 24 -0.52372 -0.57014 -1.18530 -1.16457 98.3
50 1 50 -0.14290 -0.15357 -1.43718 -1.43561 99.9
50 2 50 -0.28298 -0.30852 -1.22278 -1.21523 99.4
50 3 50 -0.41788 -0.46639 -1.03460 -1.01278 97.9
50 4 50 -0.54600 -0.63177 -0.87966 -0.82601 93.9
50 4 48 -0.54945 -0.62810 -0.93720 -0.88954 94.9
50 4 46 -0.55208 -0.62227 -0.99114 -0.95008 95.9
50 4 44 -0.54772 -0.61530 -1.03788 -1.00016 96.4
50 4 42 -0.54324 -0.60263 -1.08002 -1.04765 97.0
50 4 26 -0.51076 -0.56162 -1.11564 -1.09946 98.6

The diagonal contribution again cancels with the 〈τ̂〉 term in (5.25). The specific optimal

J values for the lattice sizes, fillings and U/t values used in this study are listed in

Table 5.1.

For an infinite system at half-filling, and only considering the two-body contribution

Eq. (5.25) can be solved analytically, see Appendix B.1. The optimal J which fulfils

Eq. (5.25), and the corresponding total energy per site, as (see B.1) can be expressed

as

JTDLopt = sinh−1

(
− 5Uπ6

288t (16 + π4)

)
, (5.27)

ETDL
J = −t 64

4π2
+
U

4
− tJTDLopt

2
(

16

4π2
+

64

π6

)
. (5.28)

The results of Eq. (5.25) and (5.27-5.28) compared with AFQMC results259 on a 16× 16

half-filled square lattice are shown in Table 5.2, for various values of U/t. The superscript

(TDL) denotes thermodynamic limit results from Eq. (5.27-5.28) for both the energy and

J parameter, and an absent superscript refers to the solution of Eq. (5.25) for the actual

finite lattices. At half-filling AFQMC does not suffer from a sign problem137 and is nu-

merically exact. One can see that the results obtained from Eq. (5.25) and (5.27-5.28)

capture most of the correlation energy for low values of U/t. For larger U/t, due to the
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Table 5.2: Ground state energy per site for the half-filled 16 × 16 square lattice with
periodic (PBC) and mixed (anti-)periodic (ABPC) boundary conditions along the (y-)x-
axis.69 Thermodynamic limit extrapolations (TDL) for various values of U/t obtained

with AFQMC259 are denoted as E
(TDL)
Ref . Results obtained by evaluating Eq. (5.25) and

Eq. (5.27-5.28) are noted as E
(TDL)
J . The optimal value of J is also shown. All energies

are in units of t.

U/t = 2 U/t = 4 U/t = 6 U/t = 8

PBC APBC PBC APBC PBC APBC PBC APBC

Eref -1.174203(23) -1.177977(20) -0.86051(16) -0.86055(16) -0.65699(12) -0.65707(20) -0.52434(12) -0.52441(12)

EJ -1.151280 -1.166370 -0.76354 -0.77769 -0.42855 -0.44160 -0.12848 -0.14051

EJ/Eref% 98.0 99.0 88.7 90.4 65.3 67.2 24.5 26.8

Jopt -0.29233 -0.28957 -0.56284 -0.55787 -0.80107 -0.79460 -1.00701 -0.99956

ETDL
ref -1.1760(2) -0.8603(2) -0.6567(3) -0.5243(2)

ETDL
J -1.1609 -0.7686 -0.4203 -0.0943

ETDL
J /Eref% 98.7 89.4 64.0 18.0

JTDLopt -0.29025 -0.55911 -0.79621 -1.00142

missing correlation between empty and doubly occupied sites in the Ansatz (5.2), the en-

ergies progressively deteriorate compared to the reference results. The optimal value Jopt

is also displayed in Table 5.2. We use the values of J obtained by solving Eq. (5.25) as a

starting point for our FCIQMC calculations to capture the remaining missing correlation

energy.

To compare this most basic combination of an on-site Gutzwiller correlator and a single

restricted Hartree-Fock determinant as a reference in Eq. (5.25) we show in Table 5.3

the percentage of the energy obtained with this method to more elaborate correlators

and reference states, for different system sizes M , number of electrons nel and interaction

strengths U/t. E(S)UGST in 5.3 denotes an on-site Gutzwiller correlator with a (symmetry-

projected) unrestricted Hartree-Fock reference state.343 At half filling and U/t ≤ 4 we

can capture more than 80% of the energy obtained with a more elaborate reference de-

terminant. Off half-filling the recovered energy is above 90% up to U/t = 4. For a more

dilute filling of 〈n〉 = 0.8, for M = 100 and U/t = 2, the energies agree to better than

99%. Although the absolute error in energy increases off half-filling, as already mentioned

in Ref. [342,343] the relative error actually decreases,118,119,365 as can be seen in the com-

parison with the AFQMC reference results,178,259,293,342 Eref in Table 5.3. As expected,

for U/t > 4 the results from Eq. (5.25) drastically deteriorate compared to E(S)UGST .

ER/UJ in Table 5.3 refer to energies obtained with restricted/unrestricted Hartree-Fock

reference states with a general two-body correlator,342 which includes all possible density-

density correlations in addition to the on-site Gutzwiller factor. The comparison with ERJ

shows that, as already found in Ref. [342], the Gutzwiller factor is by far the most impor-

tant term in a general two-body correlator for low to intermediate values of U/t ≤ 4, with

an agreement of over 98% with ERJ . Off half-filling, as can be seen in the N = 36, nel = 24

and U/t = 8 case, the relative error remains small even for large interaction. The com-

parison with the available AFQMC reference results,178,259,293,342 Eref , shows that the

solution of Eq. (5.25) with a on-site Gutzwiller correlator and a restricted Hartree-Fock
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Table 5.3: Fraction of the total energy obtained with the Gutzwiller Ansatz(5.2) based
on the Hartree-Fock determinant(5.25) compared with a Gutzwiller correlator with
an unrestricted Hartree-Fock reference EUGST and subsequent symmetry projection
ESUGST

343 and a general two-body correlator with a Hartree-Fock reference ERJ and
unrestricted Hartree-Fock reference EUJ

342 and numerically exact AFQMC reference re-
sults178,259,293,342 for different number of sites M , number of electrons nel and interaction
strengths U/t.69

M nel U/t %EUGST %ESUGST %ERJ %EUJ %Eref
16 14 2 97.34 97.03 99.69 97.30 96.79
16 14 4 92.81 91.70 99.02 93.07 90.75
16 14 8 72.68 70.16 92.28 73.84 66.60
16 16 2 80.85 80.75 99.82 93.77 93.16
16 16 4 81.84 80.18 98.57 82.61 80.24
16 16 8 21.37 20.19 47.54 21.81 20.08
36 24 4 99.67 98.26
36 24 8 98.72 93.53
64 28 4 99.74 99.19
64 44 4 99.77 98.38
100 80 2 100.00 99.98 99.84
100 80 4 99.85 99.61 97.43
100 100 2 97.69 97.56 97.27
100 100 4 88.50 88.08 87.39
100 100 6 65.70 65.19 64.04
100 100 8 25.01 24.76 23.89

reference, retrieves above 80% of the energy for U/t ≤ 4. This gives us confidence that

the optimal J obtained by this method is appropriate in the context of the Gutzwiller

similarity transformed Hamiltonian, which we further solve with the FCIQMC method.

5.3.3 Exact Diagonalization Study

Due to the non Hermitian nature of H̄ (5.19) the left and right ground state eigenvectors

|ΦL/R
0 〉 differ and depending on the strength of the correlation parameter J they can have

a very different form. The most important characteristic for the projective FCIQMC

method is the compactness of the sampled wavefunction. As a measure of this compactness

we chose the L2 norm of the exact |ΦL/R
0 〉 contained in the leading HF-determinant |ΦHF 〉

and double excitations |Φab
ij 〉 = c†ac

†
bcicj |ΦHF 〉(spin-index omitted) thereof, i.e. the sum

over the squares of the coefficients of these determinants: L2
(0,2) = c2

0 +
∑

i<j,a<b c
2
ijab.

As a simple example, in the top panel of Figure 5.1 we show L2
(0,2) for the 1D half-filled

6-site Hubbard model with periodic boundary conditions at U/t = 4 and k = 0, as a

function of the correlation parameter J . J = 0 corresponds to the original Hamiltonian

(5.18). In the bottom panel of Fig. 5.1 the Hartree-Fock energy EHF and results of

minimizing the variance of the energy Evar by Tsuneyuki,330 EHF (Jopt) with Jopt obtained
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Fig. 5.1: Top: L2 norm within the
HF determinant and double excitations,
L2

(0,2), for a half-filled 6-site Hubbard
chain with periodic boundary condi-
tions at U/t = 4 and k = 0 for
the left |ΦL

0 〉 and right |ΦR
0 〉 ground

state eigenvector of H̄ as a function of
−J .69 Bottom: The Hartree-Fock en-
ergy EHF (J) = 〈ΦHF |H̄(J)|ΦHF 〉 as
a function of −J . The dotted line in-
dicates the exact ground state energy
Eex for this system, and since H̄ is
not Hermitian EHF can drop below the
exact energy. Also indicated are the
results of minimizing the variance of
the energy of the similarity transformed
Hamiltonian Evar by Tsuneyuki,330 the
result of solving Eq. (5.25) EHF (Jopt)
and the result from a VMC optimisa-
tion EVMC .265 The vertical dotted line
indicates Jmax where L2

(0,2) of |ΦR
0 〉 is

maximal. All energies are in units of t
and the two panels share the x-axis.

by solving Eq. (5.25) and Variational Monte Carlo(VMC) results265 EVMC are shown. Due

to the fact that H̄ is not Hermitian any more, and hence not bounded by below, EHF

can drop below the exact ground state energy Eex, also displayed in Fig. 5.1, so following

Tsuneyuki330 we termed the energy axis “pseudo energy”. There is a huge increase in

the L2
(0,2) norm of the |ΦR

0 〉 until an optimal value of Jmax, close to the Jopt obtained by

solving Eq. (5.25), see Tab. 5.1, where L2
(0,2) ≈ 1, followed by subsequent decrease. The

result obtained by minimizing the energy variance Evar is higher in energy and farther

from Jmax than Jopt. And, although EVMC is closer to Eex, the optimised correlation

parameter obtained by VMC is also farther from Jmax than Jopt. At the same time L2
(0,2)

of |ΦL
0 〉 shows a monotonic decrease with increasing −J . This shows that the amount of

relevant information contained within the HF determinant and double excitations thereof

can be drastically increased in the right eigenvector, whilst decreased in the left one. For

the calculation of the energy, where only the right eigenvector is necessary, a more efficient

sampling with the stochastic FCIQMC method should be possible.

5.4 The Similarity Transformed FCIQMC Method

In this section the necessary adaptations of the FCIQMC method, see Sec. 2.3, sample

the non-Hermitian similarity transformed Hamiltonian (5.19) with 3-body interactions

are discussed. Additionally, the arguments why the shift energy ES(∆τ) (2.47) remains a

valid energy estimator for excited states calculation via Gram-Schmidt orthogonalisation,
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see Sec. 2.3.6, even for the nonorthogonal set of right eigenvectors of a non-Hermitian

operator are presented.

In variational approaches the lack of a lower bound of the energy due to the non-

Hermiticity of the similarity transformed Hamiltonian poses a severe problem. As a

projective technique the FCIQMC method has no inherent problem sampling the right

ground state eigenvector, obtaining the corresponding eigenvalue by repetitive applica-

tion of the projector (2.46). Additionally, the increased compactness of |ΦR
0 〉 observed

in Section 5.3.3, due to the suppressed double occupations via the Gutzwiller Ansatz,

tremendously benefits the sampling dynamics of i-FCIQMC. On the other hand, the im-

plementation of the additional 3-body term in (5.19) necessitate major technical changes

to the FCIQMC algorithm. We changed the NECI25 code to enable triple excitations.

Due to momentum conservation and the specific spin relations (σσσ̄) of the involved

orbitals and efficiently analytically calculable 3-body integrals of (5.19), these could be

implemented without a major decrease of the performance of the algorithm. In fact the

contractions of the 3-body term in (5.19), namely k = 0 Y k′ = 0 Y k = k′ Y q + k′ = s

lead to an O(M) additional cost of the 2-body matrix element, which have the largest

detrimental effect on the performance. (There is an O(M2) scaling for the diagonal matrix

elements, coming from the k = k′ = 0 contraction, but this has a negligible overall effect,

since we store this quantity for each occupied determinant and thus is not computed

often). The additional cost for 2-body integrals is similar to the calculation of 1-body

integrals in conventional ab-initio quantum chemistry calculations and unavoidably ham-

pers the performance, but is manageable. Surprisingly, the actual performance improves

with increasing strength of the correlation parameter J , even though the three-body in-

teractions are increasing in magnitude. This is due to the following fact: the performance

of the FCIQMC method depends heavily on the “worst-case” |Hij|/p(i|j) ratio, where

p(i|j) is the probability to spawn a new walker on determinant |Di〉 from |Dj〉 and |Hij| is
the absolute value of the corresponding matrix element 〈Di|Ĥ|Dj〉. The timestep ∆τ of

the FCIQMC simulation is on-the-fly adapted to ensure the “worst-case” product remains

close to unity, ∆τ |Hij|/p(i|j) ≈ 1. An optimal sampling would be achieved, if for every

pair (i, j) : p(i|j) ≈ |Hij| and thus ∆τ ≈ min(1, E−1
W ). Since H̄ is not Hermitian, the

off-diagonal matrix elements are not uniform, as in the original Hamiltonian (5.18). We

therefore need to ensure an efficient sampling by a more sophisticated choice of p(i|j).
Additionally we can separate p(i|j) into a probability to perform a double(triple) exci-

tation pD(1 − pD) since there are still no single excitations in (5.19), due to momentum

conservation. This split into doubles or triples, gives us the flexibility, in addition to ∆τ ,

to also adapt pD during run-time to bring |Hij|/p(i|j) closer to unity. We observed that

with increasing correlation parameter J the dynamically adapted probability to create

triple excitations increased and thus reducing the detrimental additional cost to calculate

2-body matrix elements.
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When we perform the spawning step in FCIQMC we first decide if we perform a double

excitation with probability pD, or a triple excitation with probability 1 − pD. Then we

pick two or three electrons mn(l) from the starting determinants (|Dj〉) uniformly, with

probability pelec. For a double excitation, due to momentum conservation, we only need

to pick one unoccupied orbital, since the second is fixed to fulfil km + kn = ka + kb.

To guarantee p(i|j) ∼ |Hij| we loop over the unoccupied orbitals a in |Dj〉 and create

a cumulative probability list with the corresponding matrix elements |Hij(mn, ab)| and

thus pick the specific excitation with p(i|j) ∼ |Hij|. The cost of the is O(M2), due to

the loop over the unoccupied orbitals ∼ M and the O(M) cost of the double excitation

matrix element calculation. For triple excitations the procedure is similar, except we pick

3 electrons mσ, nσ, lσ̄ with pelec, then we pick orbital aσ̄ of the minority spin uniformly

with pa = 1/nholes and pick orbital bσ weighted from a cumulative probability list pro-

portional to |Hij|; the third orbital cσ is again determined by momentum conservation

km + kn + kl = ka + kb + kc. As opposed to double excitations, this is only of cost O(M),

due to the loop over unoccupied orbitals in |Dj〉 do determine bσ. We term this procedure

as weighted excitation generation algorithm.
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Fig. 5.2: Histogram of |H̄ij |/pij ratios for the
half-filled, 50-site, U/t = 4 Hubbard model
with periodic boundary conditions for uni-
form, weighted and mixed generation proba-
bilities.69

An alternative and simpler algorithm is

to pick the unoccupied orbitals uniformly.

This decreases the cost per iteration, but

also leads to a “worse worst-case” Hij/pij

ratio leading to a decreased timestep

∆τ . Fig. 5.2 shows the histogram of the

|H̄ij|/pij ratios for the weighted procedure,

described above, the uniform choice of

empty orbitals and a mixed method for

the half-filled 50-site Hubbard model at

U/t = 4. In the mixed method, the O(M2)

scaling double excitations in the weighted

scheme, are picked uniformly, while the

O(M) scaling triple excitations are still

weighted according to their matrix element

|H̄ij|. Longer tails in a distribution indi-

cate the need for a lower timestep to ensure ∆τ |H̄ij|/pij ≈ 1. It is apparent that the

mixed scheme possesses the optimal combination of favourable |H̄ij|/pij ratios similar to

the weighted method, with manageable additional cost per iteration, shown in Table 5.4.

Table 5.4 shows the relative difference of the timestep ∆τ , time per iteration titer, number

of aborted excitations nabort and acceptance rate naccept of the different methods compared

to the original J = 0 uniform sampled half-filled, 50-site Hubbard model with U/t = 4.

While there is a sevenfold increase of the time per iteration of the mixed scheme com-
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Tab. 5.4: Ratio of the timestep
∆τ , time per iteration titer,
aborted nabort and accepted
excitations naccept of the dif-
ferent excitation generation
probabilities compared to the
J = 0 uniform reference for
the half-filled, 50-site, U/t = 4
Hubbard model with periodic
boundary conditions.

J method %∆τ %titer %nabort %naccept

0 weighted 100.00 240.12 0.00 100.00

6= 0 uniform 21.02 169.33 93.72 77.31

6= 0 mixed 35.55 719.22 40.14 130.64

6= 0 weighted 45.01 1506.72 0.00 165.29

pared to the original uniform, the timestep is almost a third larger and the accepted

rate of spawning events a third higher. nabort indicates those spawning attempts which

originally are proposed in the uniform scheme, but are finally rejected, due to zero matrix

elements or are Fermi blocked. This quantity is also decreased by more than a half in

the mixed method compared to the uniform original scheme. naccept indicates the number

of accepted proposed spawning events and is directly related to the pspawn (2.50). The

choice of the excitation generator is therefore not straightforward and depends on the

interaction strength and J : the uniform scheme performs better than expected at small

U/t, whilst the mixed scheme performs better at large U/t.

5.4.1 Excited States of non-Hermitian Operators with ST-FCIQMC

The set of right eigenvectors H̄ |ΨR
i 〉 = Ei |ΨR

i 〉 of a non-Hermitian operator H̄ are in

general not orthogonal to each other. Only the set of different left- and right eigen-

vectors form a biorthogonal basis
〈
ΨL
i

∣∣ΨR
j

〉
= δij.

275 Consequently, the approach to

obtain excited states in FCIQMC, namely by running multiple independent simulations

in parallel and applying a Gram-Schmidt orthogonalization to a chosen number of excited

states22

|Ψn(τ + ∆τ)〉 = P̂n(τ + ∆τ)
[
1−∆τ

(
Ĥ − E(n)

S (τ)
)]
|Ψn(τ)〉 (5.29)

with E
(n)
S being the energy shift associated with state n and

P̂n(τ) = 1−
∑
m<n

|Ψm(τ)〉 〈Ψm(τ)|
〈Ψm(τ) |Ψm(τ)〉

, Em < En, (5.30)

being the Gram-Schmidt projector, which removes all contributions of lower lying states

|Ψm〉 and thus orthogonalises |Ψn〉 to each state with Em < En, should in general not be

applicable to obtain excited states of non-Hermitian operators. By orthogonalising each

eigenvector
〈
ΨL
i

∣∣ΨR
j

〉 !
= 0 for i 6= j (i and j indicate the excited states), the sampled

excited states will in general not be identical to the exact right eigenvectors of the non-

Hermitian H̄ (5.19). Except, if the excited states belongs to a different spatial or total

spin symmetry sectors, the overlap to the ground state is zero, due to symmetry. In this

case the excited state approach within the FCIQMC formalism, via orthogonalisation,
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correctly samples these orthogonal excited states.

In general, since the set of right eigenvectors |ΦR
i 〉 of a non-Hermitian operator are not

guaranteed to be orthogonal, we cannot rely on the projected energy estimate (2.52) as

an estimate for the excited state energy. It turns out, since the spectrum of H̄ does not

change due to the similarity transformation (5.6), the shift energy E
(n)
S in Eq. (5.29),

dynamically adapted to keep the walker number constant, remains a proper estimate for

the excited state energy.

To illuminate this fact, the difference to the exact energy, obtained by the projected ep

and shift es energy estimator, for the first 10 states of the 1D 6 e− in 6-site, periodic,

U/t = 4, k = 0 Hubbard model with a correlation parameter J = −0.1 are shown in

Fig. 5.3. Also shown is the difference of the sum of the overlap of the i-th excited states

to all lower lying states j with Ej < Ei, for the exact right eigenvectors obtained by exact

diagonalization and the sampled eigenvectors within FCIQMC

∆Oi =
∑
j

|
〈
Ψex
i

∣∣Ψex
j

〉
−
〈
Ψqmc
i

∣∣Ψqmc
j

〉
| ∀j : Ej < Ei. (5.31)

As mentioned
〈
ΨR
i

∣∣ΨR
j

〉
6= 0 is possible for non-Hermitian operators, and is the case

for states 3, 4 and 5 shown in Fig. 5.3, indicated by a large value of ∆Oi, since within

FCIQMC the incorrect
〈
Ψqmc
i

∣∣Ψqmc
j

〉 !
= 0 is wrongfully enforced. The incorrect form of

the wavefunction is accompanied by a large error in the projected energy ep compared to

the exact result.

Because the i-th excited state is orthogonalised to all the lower lying excited states to

converge to the next higher energy governed by the dynamics (2.46) and the spectrum

of the Hamiltonian (5.1) is unchanged by the similarity transformation (5.6), the shift

energy remains a good energy estimator. This can clearly be seen in Fig. 5.3, as the shift

energy remains a good energy estimate of all the targeted eigenstates.

The only exception in Fig. 5.3, which could be misleading, is state number 7, which

appears to have a large error in ∆Oi, but the projected energy is still a good estimator

for the energy. This comes from the fact that state 6 and 7 are actually degenerate and

thus the exact eigenvectors |Ψex
6 〉 and |Ψex

7 〉 obtained by Lapack4 are an arbitrary linear

combination and could be chosen to be both orthogonal to the states i < 6.

To see why the shift energy is a valid estimate for the exact excited states energy, let’s look

at the right eigenvalue equation for a general (Hermitian or non-Hermitian) Hamiltonian

Ĥ for the i-th excited state

Ĥ |Ψi〉 = Ei |Ψi〉 , (5.32)
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Fig. 5.3: Error of the first 10 eigenstate en-
ergies obtained by the projected energy ep
and shift energy es for the 6 e− in 6-site
1D periodic Hubbard model at U/t = 4 and
k = 0 compared to exact diagonalization
results.69 The horizontal dashed lines in-
dicate the averaged statistical errors. The
green pluses show the difference of the ex-
act overlaps to the overlaps obtained within
FCIQMC, see Eq. (5.31). A correlation pa-
rameter of J = −0.1, initiator threshold of
ninit = 1.2 and a maximum walker number
of Nw = 105 were used. (a) Exact overlap is
ill-defined due to degeneracy of states 6 and
7.
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where |Ψi〉 is the i-th right eigenvector of Ĥ. We now want to show that there exists

a vector |Φi〉, which is an eigenvector of the composite operator P̂iĤ with the same

eigenvalue Ei

P̂iĤ |Φi〉 = Ei |Φi〉 , (5.33)

where P̂i is the Gram-Schmidt projector (5.30) and |Φ0〉 = |Ψ0〉, which creates an or-

thonormal basis out of the linearly independent, but not necessarily orthonormal set

{|Ψi〉}. We assume all states to be normalized. Multiplying eq. (5.32) with P̂i from the

left, we obtain

P̂iĤ |Ψi〉 = EiP̂i |Ψi〉 = Ei |Φi〉 → |Φi〉 = P̂i |Ψi〉 . (5.34)

And we assume |Φi〉 to be the desired eigenvector of P̂iĤ. To show that we plug (5.34)

into eq. (5.33)

P̂iĤ |Φi〉 = P̂iĤP̂i |Ψi〉 = P̂iĤ

(
|Ψi〉 −

∑
j<i

〈Φj |Ψi〉 |Φj〉

)
= EiP̂i |Ψi〉 −

∑
j<i

bjiP̂iĤ |Φj〉 = Ei |Φi〉 −
∑
j<i

bjiP̂iĤ |Φj〉 , (5.35)

with bij = 〈Φj |Ψi〉. We can express |Φj〉 in eq. (5.35) and all subsequent appearances of

|Φk〉 with k < i as |Φk〉 = P̂k |Ψk〉 until we reach |Ψ0〉. So the remaining thing to show is

that P̂i |Ψj〉 = 0 for i > j.

For i > j

P̂i |Φj〉 = |Φj〉 −
∑
k<i

〈Φk |Φj〉︸ ︷︷ ︸
δjk

|Φk〉 = 0, with i > j (5.36)

is easy to show since {|Φj〉} is an orthonormal basis. We prove P̂i |Ψj〉 = 0, j < i by

induction. For i = 1 we have

P̂1 |Ψ0〉 = |Ψ0〉 − 〈Ψ0 |Ψ0〉 |Ψ0〉 = 0. (5.37)
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With the assumption P̂i |Ψj〉 = 0 for i < j, performing the induction step i → i + 1

yields

j < i : P̂i+1 |Ψj〉 = P̂i |Ψj〉︸ ︷︷ ︸
=0

−〈Φi |Ψj〉 |Φi〉 = −〈Ψi| P̂ †i︸︷︷︸
=P̂i

|Ψj〉 |Φi〉 = 0 (5.38)

j = i : P̂i+1 |Ψi〉 = P̂i |Ψi〉︸ ︷︷ ︸
=|Φi〉

−〈Φi |Ψi〉 |Φi〉 = |Φi〉 − 〈Ψi| P̂i︸︷︷︸
=P̂ 2

i

|Ψi〉 |Φi〉

= |Φi〉 − 〈Φi |Φi〉 |Φi〉 = 0, (5.39)

where we used the Hermiticity P̂ †i = P̂i and idempotency P̂ 2
i = P̂i of the projection

operator. With P̂i |Ψj〉 = 0 eq. (5.35) gives the desired

P̂iĤ |Φi〉 = Ei |Φi〉 . (5.40)

And this eigenvector |Φi〉 of the composite operator P̂iĤ is the stationary vector we

sample in FCIQMC. Since it has the same eigenvalue Ei, we obtain the correct excited

state energy estimate from the shift energy E
(i)
S in the propagator (2.58). Since the same

argument holds for the long-time limit of the projection

Q̂n(E
(n)
S ) |Ψn〉 =

(
1−∆τ

(
Ĥ − E(n)

S (τ)
))
|Ψn〉 = |Ψn〉 , (5.41)

with stationary |Ψn〉 for E
(n)
S = En. There is an eigenvector |Φn〉 of the composite

operator

P̂iQ̂i(E
(n)
S ) |Φn〉 = |Φn〉 (5.42)

for E
(n)
S = En with

|Φn〉 = Pn |Ψn〉 , since P̂nQ̂n(E
(n)
S ) |Ψn〉 = P̂n |Ψn〉 . (5.43)

This |Φn〉 is sampled by the walkers in a FCIQMC simulation and the shift energy E
(n)
S (τ)

is adapted to keep the walker population fixed. The projected energy is in general not a

good energy estimate, since

E
(i)
P =

〈Di|Ĥ|Φi〉
〈Di |Φi〉

=
〈DI |ĤP̂i|Ψi〉
〈DI |P̂i|Ψi〉

=
〈DI |Ĥ

(
1−

∑
j<i |Φj〉 〈Φj|

)
|Ψi〉

〈DI |Ψi〉 −
∑

j<i 〈DI |Φj〉〈Φj |Ψi〉

=
EicI,i −

∑
j<i bij〈DI |Ĥ|Φj〉

cI,i −
∑

j<i dI,jbij
=
EicI,i −

∑
j<i bijdI,jE

(j)
P

cI,i −
∑

j<i dI,jbij
(5.44)

with cI,i = 〈DI |Ψi〉, bij = 〈Φj |Ψi〉, dI,j = 〈DI |Φj〉 (5.45)

and |DI〉 being the reference determinant of state i. With Eq. (5.44) and knowledge of
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the exact eigenfunctions {|Ψi〉} the excited state energy could be calculated as

Ei =

[
E

(i)
P

(
cI,i −

∑
j<i

dI,jbij

)
+
∑
j<i

bijdI,jE
(j)
P

]
c−1
I,i . (5.46)

For states where 〈DI |Φi〉 ≈ cI,i and bij ≈ 0 the projected energy remains a good estimator

for the exact Ei. However, especially in cases where the exact right eigenvectors are not

orthogonal to all lower lying ones, as demonstrated in Fig. 5.3, the projected energy should

not be trusted. Another correction for the projected energy would be

〈DI |Φi〉E(i)
P = 〈DI |ĤP̂i|Ψi〉 = 〈DI |ΨI〉Ei −

∑
j<i

〈Φj |Ψi〉 〈DI |Ĥ|Φj〉︸ ︷︷ ︸
=〈DI |Φj〉E

(j)
P

(5.47)

→ Ei =
〈DI |Φi〉E(i)

P

+

∑
j<i

〈Φj |Ψi〉〈DI |Φj〉E(j)
P 〈DI |Ψi〉 (5.48)

with 〈DI |Ψi〉 = 〈DI |Φi〉+
∑
j<i

〈Φj |Ψi〉〈DI |Φj〉 (5.49)

→ Ei =
〈DI |Φi〉E(i)

P +
∑

j<i 〈Φj |Ψi〉〈DI |Φj〉E(j)
P

〈DI |Φi〉+
∑

j<i 〈Φj |Ψi〉〈DI |Φj〉
. (5.50)

Where we can estimate the overlap 〈Φj |Ψi〉 from the orthogonalisation procedure.

Actually for the correct projected energy one needs to calculate

Ē
(i)
P =

〈DI |P̂iĤ|Φi〉
〈DI |Φi〉

= Ei, since P̂iĤ |Φi〉 = Ei |Φi〉 . (5.51)

Unfortunately the numerator of eq. (5.51) takes the following form

〈DI |P̂iĤ|Φi〉 = 〈DI |Ĥ|Φi〉 −
∑
j<i

〈DI |Φj〉〈Φj|Ĥ|Φi〉. (5.52)

To calculate 〈Φj|Ĥ|Φi〉 we would need the transition (reduced) density matrices (t-(R)DM)

between all states j < i. And for the similarity transformed momentum-space Hubbard

Hamiltonian even up to the 3-body t-RDM. So we have to rely on the shift energy to

yield the correct excited state energy in the ST-FCIQMC method or apply the mentioned

shoelace technique in 5.6.

5.5 Results of the ST-FCIQMC Method

We assessed the performance of initiator ST-FCIQMC (i-ST-FCIQMC) for different Hub-

bard lattices, as a function of the Gutzwiller correlation factor J . As a starting guide

for J , we use Jopt obtained by solving Eq. (5.25) for the specific lattice size M , number

of electrons nel and interaction strength U/t, and calculate the ground state and excited
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states energies with i-ST-FCIQMC. In particular, we were interested in the rate of con-

vergence of the energy with respect walker number, or in other words, how quickly the

initiator error disappeared with increasing walker number. The optimal values of J for

each studied system can be found in Table 5.1 in Section 5.3.2. All energies are given per

site and in units of the hopping parameter t and the lines in the Figures 5.4 to 5.7 are

guides to the eye.

5.5.1 18-site Hubbard Model

We first study the 18-site Hubbard model on a square lattice with tilted boundary con-

ditions (see Fig. 5.8), which can be exactly diagonalised: at half-filling and zero total

momentum (k = 0) it has a Hilbert space of ∼ 108 determinants. All the exact reference

results were obtained by a Lanczos diagonalization.121 For this system ST-FCIQMC could

be run either in “full” mode or with the initiator approximation, i-ST-FCIQMC. This en-

ables us to assess to two separate questions, namely the performance of i-ST-FCIQMC

regarding the initiator error on the one hand, and compactness of the wavefunctions re-

sulting from the similarity transformation (without the complicating effects of the initiator

approximation), on the other.

Figure 5.4 shows the error (on a double-logarithmic scale) of the energy per site in the

initiator calculation, as a function of walker number. The left panel shows results for the

U/t = 2 system. As one can see there is a steep decrease in the error and even with only

104 walkers, for a correlation parameter of J = −1/4 (close to the Jopt) the error is below

10−4. At 106 walkers it is well below 10−6, almost two orders of magnitude lower than the

original (i.e. J = 0) Hamiltonian at this value of Nw. This also confirms the assumption

that the chosen Ansatz for the correlation function (5.2) is particularly useful in the low

U/t regime.

Results for an intermediate strength, U/t = 4, are shown in the right panel of Fig. 5.4.

Compared to the U/t = 2, more walkers are needed to achieve a similar level of accuracy.

The two sources for this behaviour are:

Firstly, i-FCIQMC calculations on the momentum-space Hubbard model are expected

to become more difficult with increasing interaction strength U/t, due to the enhanced

multi-configurational character of the ground state wavefunction. Secondly, the chosen

correlation Ansatz (5.2) is proven to be more efficient in the low U/t regime.155 Neverthe-

less, the results shown in Fig. 5.4 show a steep decrease in the double logarithmic plot of

the error with increasing walker number. The decrease is steeper for J = −1/2, close to

the analytic result obtained with Jopt = −0.5234470. For J = −1/2, at walker numbers

up to 5 · 107 we are, to within error bars, at the exact result. At a walker number of

107 there is a two order of magnitude difference in the error of the J = −1/2 and J = 0

result.
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Fig. 5.4: The error
of the energy per site
|eJ − eex| for the half-
filled 18-site Hubbard
model for the original
J = 0 and different
strengths of the corre-
lation parameter J at
k = 0 for U/t = 2 (left)
and U/t = 4 (right)
versus the walker num-
ber Nw.69 The dashed
lines indicate the sta-
tistical errors of the
Nw = 106 results with
ninit = 1.2 for U/t = 2
and of the Nw = 5 ·
107 with ninit = 2.0 for
U/t = 4. The exact ref-
erence results were ob-
tained by Lanczos diag-
onalization.121

102 103 104 105 106

Nw

10−6

10−5

10−4

10−3

10−2

|e
J
−
e e

x
|

J = 0.0
J = -0.2
J = -0.25

σ0.0
σ−0.2
σ−0.25

103 104 105 106 107

Nw

J = 0.0
J = -0.3
J = -0.5

σ0.0
σ−0.3
σ−0.5

To confirm the more compact form of the right ground state eigenvector, mentioned in

Sec. 5.3.3, we performed two analyses. First was the study of the L2 norm captured within

the HF determinant and double excitations, L2
(0,2), for the ST-FCIQMC wavefunction. In

Fig. 5.5 L2
(0,2) of the left and right ground state eigenvector of the half-filled 18-site,

U/t = 4 Hubbard model as a function of −J is shown. The results were obtained by

running full non-initiator ST-FCIQMC calculations to avoid any influence of the initiator

error. The left eigenvector was obtained by running with positive J , which corresponds

to a conjugation of H̄.

H̄(J)† =
(

e−τ̂ Ĥ eτ̂
)†

= eτ̂ Ĥ e−τ̂ = H̄(−J), (5.53)

since Ĥ† = Ĥ and τ̂ † = τ̂ . And

H̄† |ΦL〉 = E |ΦL〉 , with |ΦL〉 = e−τ̂ |Ψ〉 . (5.54)

Similar to the exact results for the 6-site model in Fig. 5.1, the right eigenvector shows a

huge compactification compared to the original J = 0 result, going from 0.65 to over 0.9.

The “optimal” value of J = Jmax = −0.57444831, where L2
(0,2) is maximal, is close to the

analytical obtained Jopt = −0.5234470, indicating that we can simply use Jopt without

further numerical optimisation of J , and still be close to optimal conditions. The right

panel of Fig. 5.6 shows the L2 norm contained in each excitation level relative to the HF

determinant for the half-filled, 18-site, U/t = 4 Hubbard model for different values of J .
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Fig. 5.5: L2 norm captured within the HF de-
terminant and double excitations, L2

(0,2), for

the half-filled 18-site Hubbard model at U/t =
4 for the left and right ground state eigen-
vector of the non-Hermitian similarity trans-
formed Hamiltonian (5.19) as a function of
−J .69 The results were obtained by a non-
initiator ST-FCIQMC calculation. |ΦL〉 was
sampled by running the simulation with pos-
itive J , which corresponds to conjugating H̄.
Jmax indicates the position of the maximum
of L2

(0,2) and Jopt is the result of Eq. (5.25).

For J = −1/2 there is a huge increase in the L2 norm of the HF determinant, indicated

by an excitation level of 0, while it drops of very quickly for higher excitation levels and

remains one order of magnitude lower than the J = 0 result above an excitation level of 5.

Our second analysis on the compactness of |ΦR
0 〉 consisted of running truncated CI291

calculations, analogous to the CISD, CISDTQ, etc. methods of quantum chemistry. Here

we truncate the Hilbert space by only allowing excitation up to a chosen value ntrunc

relative to the HF determinant. The left panel of Fig. 5.6 shows the error of the energy

per site as a function of ntrunc for different J . For J = −1/2 we are below 10−4 accuracy

already at only quintuple excitation, which is two orders of magnitude lower than the

original J = 0 result at this truncation level. The error bars in the inset of the left panel

of Fig. 5.6 are from the ntrunc = 8 simulations for each value of J , which do not differ

much from ntrunc = 5 to ntrunc = 8 for each simulation. Already at sextuple excitations

we are well within error bars of the exact result for J = −1/2, with an error that is two

orders of magnitude smaller than the J = 0 result.

Off half-filling 14 e− in 18-sites

We have also investigated the applicability of the i-ST-FCIQMC method to the off-half-

filling case, and also to excited states calculations. To this end we calculated the ground,

first and second excited states of the 14 e− in 18-sites, U/t = 4, k = 0 system. Such a

system can be prepared by removing 4 electrons (2 α and 2 β spins) from the corners

of the Fermi-sea determinant, and using this as a starting point for an i-ST-FCIQMC

simulation. The calculation of excited states with FCIQMC is explained in Sec. 2.3.6

and the applicability to the non-orthogonal excited states of a non-Hermitian operator is

discussed in Sec. 5.4.1.

Figure 5.7 shows the energy per site error of the ground-, first and second excited state

of the 14 e− in 18-site, U/t = 4, k = 0 system, compared to exact Lanczos reference
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Figure 5.6: (Left) Error of the energy per site versus the excitation level truncation ntrunc
in the half-filled, 18-site, U/t = 4, k = 0 Hubbard model for different values of J .69

The inset shows the absolute error on a logarithmic scale. The dashed lines in the inset
indicate the statistical error for the ntrunc = 8 results for each value of J . (Right) The
L2 norm contained in each excitation level relative to the HF determinant, indicated by
excitation level 0, for the half-filled, 18-site, U/t = 4, k = 0 Hubbard model for different
values of J . The inset shows the tail of the same data on a logarithmic scale.

results121 for different values of J versus the walker number Nw, obtained via the shift

energy ES,i. All states show a similar behaviour of the energy per site error. The closer

J gets to the optimal value of Jopt = −0.557941 for U/t = 4, which is determined for

E0, one observes that more than an order of magnitude fewer walkers are necessary to

achieve the same accuracy as the J = 0 case. This is true for all the states considered.

For E1, the energy difference of the Nw = 107 and J = −1/2 calculation is already within

the statistical error of 10−5, hence the non-monotonic behaviour. The size of the absolute

error of these states is comparable to the absolute error of the half-filled, 18-site, U/t = 4

system, shown in the right panel of Fig. 5.4. Since, without a chemical potential, the total

ground state energy per site of the nel = 14 system, e
(14)
0 = −1.136437, is lower than the

half-filled one, e
(18)
0 = −0.958466, the relative error is in fact smaller off half-filling. As

already mentioned above and shown in Table 5.2 and 5.3, the projective solution based

on the restricted Hartree-Fock determinant (5.25) also yields smaller relative errors off

half-filling. These results give us confidence to also apply the i-ST-FCIQMC method to

systems off half-filling and for excited states energy calculations.

Symmetry Analysis

As mentioned in Sec. 5.4.1, the set of right eigenvectors of a non-Hermitian operator

are in general not orthogonal, except when they belong to different irreducible repre-
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Figure 5.7: Energy per site error compared to exact Lanczos results121 for the 14 e− in
18-site, U/t = 4, k = 0 Hubbard model for the (a) ground-, (b) first and (c) second
excited state as a function of walker number Nw.69 All three panels share the x and y
axes. The dashed lines indicate the statistical errors of the Nw = 107 for each value of J .

sentations and/or total spin symmetry sectors. Here we investigate the interesting in-

fluence of the similarity transformation on the symmetry properties of the truncated

low-energy subspace of the 14e− in 18-sites system with total k = 0. There are 8

important low energy determinants with the 5 lowest energy k points double occu-

pied and 4 e− distributed among the 4 degenerate orbitals of the corner of the square

k1 = (−1,−1),k2 = (1,−1),k3 = (−1, 1) and k4 = (1, 1) to preserve the total k = 0

symmetry. This is illustrated in Fig. 5.8, where red indicates the doubly occupied k-

points and green the singly occupied ones. The point group of the square lattice is D4h.

There are 2 closed shell determinants in this set, with opposite k-points doubly occupied

and 6 open-shell determinants with all 4 corners of the Brillouin zone singly occupied.

Without a correlation parameter all these 8 determinants are degenerate in energy, while

with J 6= 0 this degeneracy is lifted. To study the low energy properties of this system we

diagonalized H̄ in this subspace. Table 5.5 shows the results. We found that with J = 0

the ground state of this subspace has a different spatial and spin symmetry, 5B1g, than

the ground state of the full system, which belongs to 1A1g. At approximately J ≈ −0.71

there is a crossover and the subspace ground state changes to 1A1g symmetry. The first

excited state in the subspace is then the 5B1g, which is also the symmetry of the first

excited state of the full system and the 2nd excited state is of 1B2g symmetry, the same as

2nd excited state of the not truncated system. Therefore, the similarity transformation

not only ensures a more compact form of the ground- and excited state wavefunctions,

but also correctly orders the states obtained from subspace diagonalization. The impli-

cation is that, in the off half-filling Hubbard model, the structure of ground state has

very important contributions arising from high-lying determinants, so much so that they
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Tab. 5.5: Irreducible representations
and spin symmetry of the ground
state E0 and first two excited states
E1, E2 of the U/t = 4, k = 0, 14 e−

in the 18-site Hubbard model for the
full and subspace(subsp.) solutions
for different values of J . For a large
enough correlation parameter J the
ground state of the low-energy sub-
space resembles the correct symme-
try structure as for the full solution.

E0 E1 E2

Full 1A1g
5B1g

1B2g

J = 0 subsp. 5B1g
1A1g

1B2g

J = −0.72 subsp. 1A1g
5B1g

1B2g

Fig. 5.8: The three different square lat-
tices studied in this paper. Both the
18- and 50-site lattice have tilted peri-
odic boundary conditions with lattice vec-
tors R1 = (3, 3),R2 = (3,−3) and R1 =
(5, 5),R2 = (5,−5) respectively; while
the 36-site lattice is studied with periodic
and mixed, periodic along the x-axis and
anti-periodic boundary conditions along
the y-axis. The red points in the 18-site
lattice indicate the doubly occupied states
and the green points the singly occupied
states in the sub-space study in 5.5.1.

are necessary to get a qualitatively correct ground state wavefunction (i.e. one with the

correct symmetry and spin). With the similarity transformed Hamiltonian this is not the

case. Even small subspace diagonalization yield a ground state wavefunction with the

same symmetry and spin as the exact one. In other words, the similarity transformation

effectively downfolds information from higher lying regions of the Hilbert space to mod-

ify the matrix elements between the low-lying determinants. Since the structure of the

ground state eigenvector already has the correct symmetry (and therefore signs) in small

subspaces, the rate of convergence of the solution with respect to the addition of further

determinants is much more rapid. We believe this is a crucial property which leads to

the observed greatly improved convergence rate of the i-ST-FCIQMC method in the off

half-filling regime.

5.5.2 Results for the 36- and 50-site Hubbard Model

To put the i-ST-FCIQMC method to a stern test, we applied it to two much larger

systems, namely 36-site and 50-site lattices, which are well beyond the capabilities of

exact diagonalization In the case of the 36-site (6×6) lattice, we considered two boundary

conditions, namely fully periodic (PBC) and a mixed periodic-antiperiodic (along the x-

and y-axes respectively), the latter being used in some studies to avoid degeneracy of
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the noninteracting solution.365 We considered two fillings, namely half-filling and 24e−,

at U/t = 2 and U/t = 4. The optimal Jopt was determined by solving Eq. (5.25) and

is listed in Table 5.1 in Section 5.3.2. For the 6 × 6 by lattice we compared our results

to AFQMC calculations,259 which are numerically exact at half-filling.137 The results are

shown in Table 5.6. While the original i-FCIQMC method shows a large error even at

walker numbers up to Nw = 5 · 108 the i-ST-FCIQMC method agrees with the AFQMC

reference to within one σ error bars in all but one case (PBC U/t = 4 half-filled), where

the agreement is within 2σ. Even in that case the energies agree to better than 99.8%.

The small discrepancy could be due to this system being strongly open-shell, making

equilibration more challenging.

The 50-site Hubbard lattice corresponds to a 5
√

2 × 5
√

2 tilted square, which has been

widely investigated using the AFQMC method. We considered half-filling and various

off half-filling, nel = 26, 42, 44, 46 and 48 cases for U/t = 1, 2, 3 and 4 and calculated

the ground state energy. The optimal J are listed in Table 5.1 in Section 5.3.2. This

system size, especially with increasing U/t and off half-filling, was previously unreachable

with the FCIQMC method. We compare our half-filling results to AFQMC137,308,358

reference values, which do not have a sign problem at half-filling.137 The remaining

sources of error are extrapolation to zero temperature and finite steps, both of which are

expected to be very small. Off half-filling, exact AFQMC results are not available, and we

compare against constrained-path AFQMC(CP-AFQMC)46,374 and linearised-AFQMC(L-

AFQMC).305

Table 5.6 shows the results for various fillings and U/t values the reference calculations,

the original i-FCIQMC and the i-ST-FCIQMC method. We converged our results for this

system size up to a walker number of Nw = 109. We can see that the original i-FCIQMC

method performs well for the weakly correlated half-filled U/t = 1 system, but fails to

reproduce the reference results at U/t = 2 for this system size, and the discrepancy worsens

with increasing interaction. The i-ST-FCIQMC method on the other hand agrees within

error bars with the reported reference calculation up to U/t = 3 at half-filling. Similar

to the half-filled 36-site lattice, the i-ST-FCIQMC results are slightly below the AFQMC

reference results at U/t = 4, which could be a finite temperature effect of the AFQMC

reference results.

We investigated the half-filled 50-site U/t = 4 system further by performing the con-

vergence of a truncated CI expansions, similar to the 18-site lattice, shown in Fig. 5.9.

The convergence with excitation level truncation shows that convergence occurs from

above, and at 6-fold excitations we are converged to statistical accuracy to the fully

unconstrained simulation. The energy at 6-fold truncation is indeed slightly below the

AFQMC result, although the discrepancy is small (approximately 0.1%). It is intriguing

that the CI expansion of the 50-site lattice is converged at 6-fold excitations, which is

the same as observed for the 18-site lattice. This suggests that linear solutions to the

similarity-transformed Hamiltonian may be size-consistent to a greater degree than simi-
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Table 5.6: Zero temperature, k = 0 ground state energy results for the 36-site and 50-site
Hubbard model for various interaction strengths U/t, number of electrons nel and periodic
(PBC) and mixed (anti-)periodic boundary conditions along the (y-)x-axis, obtained with
the initiator FCIQMC and the i-ST-FCIQMC method69 compared with available (CP-
)AFQMC and linearised-AFQMC reference results.45,259,293,305,307 The differences to
the AFQMC reference energies are displayed as ∆E. The correlation parameter J was
chosen close to the optimal Jopt obtained by solving Eq. (5.25) listed in Table 5.1 of
Sec. 5.3.2 for the specific U/t value. An initiator threshold of ninit = 2.0 was chosen and
convergence of the energy up to a walker number of Nw = 109 was checked.

M U/t nel BC Eref iFCIQMC ∆EJ=0 iST-FCIQMC ∆EJ
36 4 24 APBC -1.155828(40) -1.159285(24)

36 4 24 PBC -1.18525(4) -1.182003(57) 0.003247(97) -1.1852109(52) 0.000039(45)

36 2 36 APBC -1.208306(56) -1.2080756(39) 0.000230(60) -1.2082581(17) 0.000048(58)

36 2 36 PBC -1.15158(14) -1.149734(95) 0.00185(24) -1.151544(18) 0.00004(16)

36 4 36 APBC -0.87306(56) -0.847580(84) 0.025480(64) -0.872612(50) 0.00045(61)

36 4 36 PBC -0.85736(25) -0.82807(87) 0.0293(11) -0.85625(30) 0.00111(55)

50 1 50 PBC -1.43718(11) -1.4371801(18) 0.00000(11) -1.43724130(44) -0.00006(11)

50 2 50 PBC -1.22278(17) -1.220590(16) 0.00219(19) -1.2228426(80) -0.00006(18)

50 3 50 PBC -1.03460(30) -1.023064(35) 0.01154(34) -1.034788(18) -0.00019(32)

50 4 50 PBC -0.879660(20) -0.83401(15) 0.04565(17) -0.880657(60) -0.000997(80)

50 4 48 PBC -0.93720(15) -0.89610(12) 0.04110(27) -0.93642(40) 0.00078(55)

50 4 46 PBC -0.9911420(86) -0.95550(15) 0.03564(24) -0.990564(89) 0.00058(18)

50 4 44 PBC -1.037883(59) -1.006483(38) 0.031400(97) -1.037458(47) 0.00043(11)

50 4 42 PBC -1.079276(66) -1.053756(64) 0.02552(13) -1.078908(69) 0.00037(14)

50 4 26 PBC -1.115640(20) -1.113874(16) 0.001766(36) -1.1159016(39) -0.000262(24)

lar truncations to the original untransformed Hamiltonian. However, this question is left

for a future study.

For U/t = 4 off half-filling the i-ST-FCIQMC energies are consistently slightly above the

reference AFQMC results. However, the approximations in the off half-filling AFQMC

calculations can lead to energies below the exact ones. For example,293 CP-AFQMC on

a 4 × 4 lattice with 14 e− and U/t = 4 gives an energy of −0.9863(1) compared to an

exact energy of −0.9840, i.e. an overshoot 0.2%. Similar overshoots are observed at

other fillings. In the off half-filling regime in the 50-site system at U/t = 4, CP-AFQMC

overshoots our i-ST-FCIQMC results by similar amounts. Therefore, our results are in

line with ED results for smaller lattices, and thus represent a new set of benchmarks for

the off half-filling 50-site Hubbard model.
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Fig. 5.9: The energy per site ver-
sus the excitation level trunca-
tion ntrunc in the half-filled, 50-
site, U/t = 4, k = 0 Hubbard
model.69 AFQMC reference45 and
non-truncated i-ST-FCIQMC re-
sults are also shown. Similar to
the 18-site system at half-filling
(Fig. 4.6), the energies are well-
converged at 6-fold excitations.

5.6 Conclusion and Outlook

We have used a projective solution based on the restricted Hartree-Fock determinant to

obtain an optimised Gutzwiller correlation parameter. For low to intermediate interac-

tion strength, this method generally recovers over 80% of the ground state energy. Based

on this mean-field solution we derived a similarity transformed Hubbard Hamiltonian,

generated by the Gutzwiller Ansatz, in a momentum-space basis. We solved for the ex-

act ground- and excited states energy of this non-Hermitian operator with the FCIQMC

method. We have shown that the right eigenvector of the non-Hermitian Hamiltonian

has a dramatically more compact form, due to suppression of energetically unfavourable

double occupancies, via the Gutzwiller Ansatz. This increased compactness of the right

eigenvectors allowed us to solve the Hubbard model for system sizes, which were previ-

ously unreachable with the i-FCIQMC method. We benchmarked our results with highly

accurate AFQMC reference results and find extremely good agreement at and off half-

filling up to interaction strengths of U/t = 4. We hope this combination of a similarity

transformation based on a correlated Ansatz for the ground state wavefunction and subse-

quent beyond mean-field solution with FCIQMC can aid the ongoing search for the phase

diagram of the two-dimensional Hubbard model in the thermodynamic limit.
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Outlook

An important extension of the present work will be to compute observables other than the

energy. To compute the expectation values of operators Ô which do not commute with

the Hamiltonian we need additionally to obtain the left eigenvector of the non-Hermitian

H̄ with the Ansatz 〈ΨL| = 〈Φ| e−τ̂

〈Ψ| Ĥ = 〈Φ| e−τ̂ H = E 〈Φ| e−τ̂ . (5.55)

The expectation value of the similarity transformed operator Ō = e−τ̂ Ô eτ̂ with |ΦR/L〉
yields the desired

〈ΦL|Ō|ΦR〉
〈ΦL |ΦR〉

=
〈Ψ|eτ̂ e−τ̂ Ô eτ̂ e−τ̂ |Ψ〉
〈Ψ|eτ̂ e−τ̂ |Ψ〉

= 〈Ô〉 . (5.56)

As already observed in 5.5.1, applying H̄ with −J yields the left eigenvector |ΦL〉 = eτ̂ |Ψ〉.
To perform this in the FCIQMC we only need to run two independent simulations in par-

allel, as is already done in replica-sampling of reduced density matrices,228 where the two

runs use an opposite sign of the correlation parameter J . Observables, Ô, which commute

with the chosen Gutzwiller correlator [ τ̂ , Ô ] = 0, such as the double occupancy 〈n↑n↓〉,
can be calculated by the 2-body RDM obtained with the left and right eigenvector

Γpq,rs = 〈ΦL|c†pc†qcscr|ΦR〉, (5.57)

with normalized 〈ΦL |ΦR〉 = 1 and p, q, r and s denoting spin-orbital labels in the mo-

mentum space. Non-commuting observable, [ τ̂ , Ô ], have to be similarity transformed

Ō = e−τ̂ Ô eτ̂ and might require higher order density matrices.

Simultaneous calculation of the left eigenvectors |Φi
L〉 also allows us to obtain the correct

excited state wavefunctions, in addition to the already correct excited state energy via the

shift energy E
(i)
S mentioned in Sec. 5.4.1 and 5.5.1, in the following manner: For m excited

states we run 2m simulations in parallel, where every odd numbered calculation solves for

a right eigenstate |Φi
R〉, which is orthogonalized against all |Φj

L〉 with Ej < Ei. And vice

versa, every even numbered simulation solves for a left eigenvector |Φi
L〉, orthogonalised

against each |Φj
R〉 with Ej < Ei. In this shoelace-manner m left and right excited state

eigenvectors are obtained based on the bi-orthogonal property of left and right eigenvec-

tors of non-Hermitian Operators
〈
Φi
L

∣∣Φj
R

〉
= 0 for i 6= j. Results on observables other

than the energy and correct left and right eigenvectors of excited states will be reported

in future work.

To perform accurate thermodynamic-limit extrapolations, we also need to reduce the fi-

nite size errors of the kinetic term in 5.7. This can be done by twist averaged boundary

conditions,187,250,259,306 which is readily applicable for the similarity transformed Hamil-

tonian in FCIQMC, and will be reported in future work.



5. Explicitly Correlated Ansatz in FCIQMC 157

5.6.1 The real-space Hubbard Formulation

To study the Hubbard model in the strong interaction regime, the use of more general

two-body44,219,342 and especially holon-doublon correlators155,192,344 in the wavefunction

Ansatz are necessary. In a momentum space basis, these would lead to N -body excitations

in the worst case. There is ongoing work to optimise general two-body correlators with

VMC and use the optimised correlation parameters to build a similarity transformed

Hamiltonian in real-space, where the correlators only lead to diagonal terms, and solve

this model with FCIQMC.

In the large U/t limit the kinetic hopping term in the Hubbard Hamiltonian can be treated

as a small perturbation and thus the use of the one-body operator as the correlator

τ̂ = J
∑
i,j,σ

a†i,σaj,σ = J
∑
k,σ

εk nk,σ (5.58)

is an interesting approach.

The similarity transformation of the momentum-space Hubbard model with the correlator

(5.58) yields

˜̂
H = −t

∑
k,σ

εk nk,σ +
U

L

∑
p,q,k

c†p−k,↑c
†
q+k,↓cq,↓ck,↑ eJ(εp+εq−εp−k−εq+k), (5.59)

with an effective two-body potential.

Since in the large U/t regime of the Hubbard model the use of a real-space basis is more

beneficial, we can transform Eq. (5.59) back to the real-space∗ yielding

H̄ =− t
∑
i,j,σ

a†i,σaj,σ +
U

2

∑
i,j,k,l,σ

a†i,σa
†
j,σ̄ak,σ̄al,σ

×
∑
m

F (J, i−m)F (J, j−m)F (−J,m− k)F (−J,m− l), (5.60)

where

F (J, l) =
1

L

∑
p

eip·l e−Jεp (5.61)

is a Fourier transformation of e−Jεp .

The similarity transformation with the kinetic hopping correlator (5.58) induces two-

body interactions in the real-space Hubbard Hamiltonian, which also include occupation

dependent long-range hopping processes for j = k and i = l. This similarity transformed

Hamiltonian (5.60) was implemented in our FCIQMC code NECI25 and is currently inves-

tigated in the intermediate-to-strong interaction regime of the Hubbard model.

∗Derivation omitted
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5.6.2 The Heisenberg Model

Similar types of an explicitly correlated wavefunction Ansatz can be applied to the Heisen-

berg and t-J lattice models.

As discussed in Sec. 4.5 the Heisenberg model can be written as

ĤH = J
∑
〈i,j〉

[
Ŝzi · Szj −

1

2

(
a†i↑aj↑a

†
j↓ai↑ + a†i↓aj↓a

†
j↑ai↓

)]
+ h

∑
i

Szi , (5.62)

with diagonal contributions proportional Ŝzi/j and spin-flip processes between nearest-

neighbour sites i and j.

A possible correlator for the Heisenberg model is

τ̂s =
gs
2

∑
〈i,j〉,σ

niσnjσ̄, (5.63)

which correlates antiparallel spins on nearest-neighbour sites.

The similarity transformation of (5.62) with the correlator (5.63) H̄ = e−τ̂s Ĥ eτ̂s yields

H̄H = J
∑
〈i,j〉

[
Ŝzi · Szj −

e−2gs

2

(
a†i↑aj↑a

†
j↓ai↑ e2gs(ηi−ηj) +a†i↓aj↓a

†
j↑ai↓ e2gs(ηj−ηi)

)]
+ h

∑
i

Szi ,

(5.64)

with

ηi =
∑
d∈N (i)

Ŝzi+d =
1

2
(ni+d,↑ − ni+d,↓), (5.65)

which modifies the spin-flip term in the Hamiltonian depending on the spin polarization

of nearest-neighbour sites d of site i.

5.6.3 The t-J Model

As presented in Sec. 4.5 the Hamiltonian of the t-J model is given by

Ĥt−J = −t
∑
〈i,j〉,σ

a†i,σaj,σ + J
∑
〈i,j〉

[
Ŝzi · Szj −

1

2

(
a†i↑aj↑a

†
j↓ai↑ + a†i↓aj↓a

†
j↑ai↓

)
− ninj

4

]
.

(5.66)

Both the correlator based on the number of nearest-neighbour antiparallel spins (5.63)

and a general nearest-neighbour density-density correlator

τ̂d =
gd
2

∑
〈i,j〉

ninj, with ni = ni↑ + ni↓, (5.67)
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can be used as a correlated Ansatz for the ground state wavefunction of the t-J model.

Similarity transformation based on the combination of the two correlators (5.63) and

(5.67) eτ̂d+τ̂s , since [ τ̂s, τ̂d ] = 0, yields the following transformed t-J Hamiltonian

H̄t−J =− t egd
∑
〈i,j〉,σ

a†iσajσ e−gs(ζjσ̄−ζiσ̄)+gd(ζj−ζi)

+
∑
〈i,j〉

[
Ŝzi · Szj −

e−2gs

2

(
a†i↑aj↑a

†
j↓ai↑ e2gs(ηi−ηj) +a†i↓aj↓a

†
j↑ai↓ e2gs(ηj−ηi)

) ninj
4

]
,

(5.68)

with

ζiσ =
∑
d∈N (i)

ni+d,σ and ζi =
∑
σ

ζiσ, (5.69)

being sums of nearest-neighbour spins of i.

The similarity transformation of (5.66) based on the correlators (5.63) and (5.67) induces

a modified hopping based on the overall and spin-dependent density of nearest-neighbour

sites. As in the Heisenberg model, discussed above, the spin-flip terms of (5.68) are

modified depending on the spin polarization of nearest-neighbour sites.

Both the t-J and Heisenberg model and the corresponding similarity transformed Hamil-

tonians mentioned above have been implemented in out FCIQMC code NECI,25 but further

studies on the effect of the correlated wavefunction Ansatz need to be conducted.

The method was also applied to the uniform electron gas197 in the framework of FCIQMC

and there is ongoing work to apply this method to ab-initio molecular systems.
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Discussion and Conclusion

The topic of this thesis was the development of FCIQMC methods for strongly correlated

electron systems, to extend their applicability towards increasing size and complexity.

In addition to the exponential growing Hilbert space size, due to correlation effects, a

(close-to) single-reference description of the wavefunction is not possible, since a multi-

tude of configurations contribute almost equally. The latter defies a compact description

within conventional approaches and becomes an obstacle for an efficient sampling with

the FCIQMC method, the effectiveness of which depends crucially on the compactness of

the wavefunction.

Here, two possible routes to overcome these hurdles, by compressing the information

encoded in the wavefunction to enable a more efficient sampling, were systematically

investigated; namely the implementation and usage of (i) the total SU(2) spin symme-

try of nonrelativistic molecular Hamiltonians, (ii) a correlated wavefunction Ansatz and

consequent nonunitary similarity transformation.

Firstly, the efficient usage of a spin-adapted basis in FCIQMC has been made possible

within the (graphical) unitary group approach (GUGA) and the severe limitations of

previous implementations were overcome. When formulated in such a basis, simulations

conserve the total spin quantum number and the Hilbert space size of the problem is

reduced. As another consequence, targeting specific many-body subspaces of the Hamil-

tonian and getting access to their excitation energies is possible, and thus one is able to

study phenomena governed by the interplay of different—even degenerate—spin sectors.

However, the use of a spin-adapted basis did not improve—as was initially expected—the

acceleration of convergence of the projective FCIQMC method.

We benchmarked the spin-adapted FCIQMC method and compare results with other

computational approaches, for the nitrogen atom, N2, the Hubbard model and an one-

dimensional hydrogen chain and we find excellent agreement with reference results, when

available. In particular for the nitrogen atom we obtain the spin gap of the 4So ground-

and 2Do excited state within chemical accuracy to experiment and we demonstrate that

the calculation of low-spin eigenstates of systems with up to 30 open-shell orbitals, such

as the hydrogen chain, is possible. We apply the method to study, selected 3d-transition

metals, cobalt and scandium, targeting properties, which defy a simple single-reference
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description. In the cobalt case, the spin-gap of the high-spin ground state (single-reference

wavefunction) and low-spin excited state (multi-reference wavefunction) was determined

within chemical accuracy to experiment. Previous theoretical studies of the electron

affinities of the 3d-transition metal series left out scandium, due to the unusual occupation

of the 4p orbital of the anion bound states and consequent strong multi-reference character

of the wavefunction. In the scandium case, we focus on the electron affinity, a property

ignored in previous theoretical studies, mainly due to the unusual occupation of the 4p

orbital of its anion bound states that induces a strong multi-reference character in the

wavefunction. We find excellent agreement with experimental results and on top we

determine from first-principles the order of the anion’s bound spin-states.

This spin-adapted implementation brings FCIQMC en par with many other quantum

chemical methods, which already utilize the inherent total spin conservation of non-

relativistic, spin-independent molecular Hamiltonians. To combine the spin-adapted

FCIQMC with the stochastic CASSCF method, the final missing piece is the spin-pure

implementation of an efficient sampling of reduced density matrices; which would enable

us to solve active spaces of unprecedented size in a spin-pure fashion, extending even

further the applicability of the method.

Turning our attention to the two-dimensional, repulsive Hubbard model: We investigated

an explicitly correlated wavefunction Ansatz, that incorporates part of the correlation

effects based on the Gutzwiller correlator, by an exact nonunitary similarity transforma-

tion in momentum-space, resulting in a non-Hermitian Hamiltonian with novel three-body

interactions. Based on the restricted Hartree-Fock determinant, we optimised the correla-

tion parameter by a simple projective equation, thus obviating the need for an expensive

numerical optimisation. We demonstrated that the FCIQMC method, as a projective

technique, is well-suited for such non-Hermitian problems, and its stochastic nature can

handle the 3-body interactions exactly without undue increase in computational cost. Due

to the suppression of energetically unfavourable double occupancies, via the Gutzwiller

Ansatz, we observe a dramatically more compact form of the right eigenvector. The latter

fact allows a considerably more efficient sampling, which in turn admits the simulation of

unprecedented lattice sizes, well beyond the reach of the method applied to the original

Hubbard Hamiltonian. However, with increasing interaction strength, due to localisation,

the momentum-space basis becomes ill-suited and instead a localised real-space basis

should be used. Since our approach is currently formulated in momentum-space, we are

limited to the low- to intermediate interaction strength regime.

We studied the resulting non-Hermitian Hamiltonian in the low- to intermediate interac-

tion regime and reproduced the exact results for the 2D 18-site system for the ground-

and excited states. Furthermore, due to the extreme compactness of the wavefunction we

can handle lattice sizes, unreachable with the standard FCIQMC. In particular, for the
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36- and 50-site Hubbard model, our results at and off half-filling are in perfect agreement

with more mature methods, i.e. auxiliary field quantum Monte Carlo.

Given the above, together with its flexibility and memory-efficiency, the FCIQMC method

is now adequate to study effective lattice models of increasing size, nontrivial geometries,

with local or even nonlocal interactions. The extrapolation of results to the thermo-

dynamic limit is now in reach, enabling us to take part in the ongoing research of the

underlying mechanisms of the phase diagram of the 2D Hubbard model.

An enormous benefit of FCIQMC, compared to other methods, is the direct availability of

a stochastic representation of the ground state wavefunction. However, for the similarity

transformed Hamiltonian we will need to sample the different left eigenvector in addition

to the right one to be able to correctly sample the reduced density matrices, which in

turn will allow us to compute the expectation value of any observable of interest.





A
The Graphical Unitary Group Approach

A.1 CSF Excitation Identification

Efficiently identifying the difference between two given CSFs and the type of excitation

(generator types) listed in Table 4.3 of Section 4.2 is crucial for an optimized matrix

element calculation. However, for CSFs this operation is more involved compared to Slater

determinants. This is because not only occupancy differences, but also changes in the

singly occupied orbitals (different spin-couplings) have to be taken into account, as they

can also lead to non-zero coupling coefficients. The defining difference for the excitation

is the difference in spatial occupation numbers. The step-values, di = {0, 1, 2, 3}, of the

spatial orbitals of a CSF are efficiently encoded by two bits per spatial orbital

di = 0 : 00, di = 1 : 01, di = 2 : 10, di = 3 : 11,

in an integer of length 2n. This is equivalent to the memory requirement of storing the

occupied spin-orbitals of a Slater determinant. The spatial occupation difference, |∆n|,
can be efficiently obtained by shifting all negatively spin-coupled, di = 2 : 10, to the right,

and computing the bit-wise xor-operation on two given CSFs and counting the number

of set bits in |∆n|, e.g. by the Fortran 2008 intrinsic popcnt:

|m〉 = |0, 1, 2, 3〉 : 00 01 10 11

|m′〉 = |1, 2, 1, 2〉 : 01 10 01 10

n(m) : 00 01 01 11

n(m′) : 01 01 01 01

|∆n| : xor: 01 00 00 01

Σ|∆n|: popcnt(∆n): 2

∆n = n(m′)− n(m) : |+1, 0, 0,−1〉

With Σ|∆n| we can identify the excitation level, which would be a single excitation from

orbital 4 to 1 in the example above, and ∆n gives us information, in which spatial orbitals

electrons got removed or added. However, for CSFs the orbital occupation difference alone

is not enough to completely identify an excitation between two CSFs, since for excitations

165
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of exchange type, involving RL and RL generators, there can be a change in the spin-

coupling, without an actual change in orbital occupation. So additionally we also need

information of the step-vector difference, ∆d, which is just obtained by the xor-operation

on the bit-representation of two given CSFs:

|m〉 = |1, 1, 0, 3〉 : 01 01 00 11

|m′〉 = |1, 2, 1, 1〉 : 01 10 01 01

|∆n| : 00 00 01 01 Σ = 2

∆d : 00 11 01 10

In this example it can be seen, that the |∆n| information alone would lead us again

to believe a single excitation connects m and m′, but this is not compatible with the

change in step-vector at orbital 2. So in addition, we need to determine if there are step-

vector changes below the first, ∆db, or above the last, ∆da, occupation change in ∆n.

This can be done efficiently with the Fortran 2008 intrinsic bit-operations, leadz(I)

(trailz(I)), which give the number of leading(trailing) zeros in integer I. The case that

there are only step-vector changes, ∆d, within, the first and last ∆ 6= 0 cases, is encoded

by ∆db = ∆da = 0.

Σ|∆|n > 4 indicates a higher excitation than double, so the two CSFs are not possi-

bly connected by a single Hamiltonian application and can be disregarded. The non-

zero Hamiltonian matrix elements can be identified by following combinations of ∆n and

∆d:

Σ|∆n| = 0 & ∆d 6= 0:

This combination indicates, that there is no difference in the occupation number between

two CSFs m and m′, but a change in the spin-coupling of the singly occupied orbitals.

Only a mixed generator RL → RL generator combination, corresponding to the type

(2c) in Table 4.3, can lead to those types of excitations. Details on the matrix element

calculation in general can be found in Sec. A.2.

Σ|∆n| = 2 & ∆db = ∆da = 0:

This combination indicates a regular single excitation and the order of the removed and

added electron determines the type of generator Êij, corresponding to type (0a) in Ta-

ble 4.3,

∆n = +1→ −1 : R→ R

∆n = −1→ +1 : L→ L.

Σ|∆n| = 2 & ∆db 6= 0 or da 6= 0:

This indicates step-vector changes above or below the occupation differences, which iden-

tifies a mixed start RL or end RL segment. Again the order of the orbital occupation
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and step-vector changes below or above ∆n identifies the type of excitation

(1j) ∆db → ∆n+1 → ∆n−1 : RL→ LR→ R

(1i) ∆db → ∆n−1 → ∆n+1 : RL→ RL→ L

(1f) ∆n+1 → ∆n−1 → ∆da : R→ LR→ RL

(1e) ∆n−1 → ∆n+1 → ∆da : L→ RL→ RL,

with ∆n±1 = ∆n = ±1 and the reference to the entries of Table 4.3.

Σ|∆n| = 4 &∆db = ∆da = 0:

In this case it is necessary to have ∆db = ∆da = 0, otherwise this would indicate more

than a double excitation, which would lead to a vanishing Hamiltonian matrix element.

Again the order of the occupation differences gives information on the type of generators

involved. The following combinations are identifiable only with ∆n (with reference to the

entries of Table 4.3)

(2b) ∆n = −2→ +2 : LL→ LL

(2a) ∆n = +2→ −2 : RR→ RR

(1h) ∆n = −2→ +1→ +1 : LL→ LL/LL→ L

(1g) ∆n = +2→ −1→ −1 : RR→ R/RR→ R

(1d) ∆n = −1→ −1→ +2 : L→ LL/LL→ LL

(1c) ∆n = +1→ +1→ −2 : R→ RR/RR→ RR

(1a) ∆n = −1→ +2→ −1 : L→ LR→ R

(1b) ∆n = +1→ −2→ +1 : R→ RL→ L

(3b) ∆n = −1→ −1→ +1→ +1 : L→ LL/LL→ LL/LL→ L

(3a) ∆n = +1→ +1→ +1→ +1 : R→ RR/RR→ RR/RR→ R,

where, e.g. LL/LL, indicates that the order of indices of equivalent generators, êil,jk/êik,jl

see Fig. A.1, can not be determined by ∆n alone. In the case of alike generators RR(LL)

this order does have influence on the sign of the matrix element,284 see Section A.2 for

more details.

There are combinations of occupation differences where additionally the step vector dif-

ferences have to be checked, since there are multiple two-body operators êij,kl possible,
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L→ LL→ LL→ L
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−

L→ LL→ LL→ L

Figure A.1: Equivalence of the two possible type (3b) double excitations êil,jk and êik,jl
with i < j < k < l. The minus (plus) indicates the removal (addition) of an electron.

+

−

+

−

L→ L→ L→ L
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−

L→ RL→ RL→ L

+

−

−

+

R→ R→ L→ L

+

−

−

+

R→ LR→ LR→ L

Figure A.2: Equivalence of the 3d0 and 3d1 (left) and 3e0 and 3e1 (right) generator
combinations leading to the same orbital occupation difference between two CSFs.

which can lead to the same excitation:

∆n = −1→ +1→ ∆d→ −1→ +1 :

L→ RL→ RL→ L (3d1)

L→ L→ L→ L, ∆d
!

= 0 (3d0)

∆n = −1→ +1→ ∆d→ +1→ −1 :

L→ RL→ LR→ R (3f1)

L→ L→ R→ R, ∆d
!

= 0 (3f0)

∆n = +1→ −1→ ∆d→ +1→ −1 :

R→ LR→ LR→ R (3c1)

R→ R→ R→ R, ∆d
!

= 0 (3c0)

∆n = +1→ −1→ ∆d→ −1→ +1 :

R→ LR→ RL→ L (3e1)

R→ R→ L→ L, ∆d
!

= 0 (3e0),

where every second case is only possible if there are no step-vector differences, ∆d = 0,

between the second and third occupation difference and reference to Table 4.3. The

equivalence of these generator combinations can be seen in Fig. A.2. However, even

with no ∆d difference between the second and third occupation difference both generator

combinations still contribute to the Hamiltonian matrix element, see Sec. A.2 for more

details.

With this method the distinct excitation types listed in Table 4.3 in Sec. 4.2 can be

efficiently identified.
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A.2 Detailed Matrix Element Evaluation in the GUGA

In this section we will explain the efficient matrix element calculation in a spin-pure CSF

basis based on the GUGA approach in more detail.

A.2.1 Diagonal matrix elements

The diagonal matrix element for a GT state, |m〉, of the spin-free Hamiltonian (3.8) given

in Section 3.3 is given by the sum of the one-body matrix elements, 〈m|Ĥ0|m〉, with

Ĥ0 =
∑

ij tij Êij, and the two-body contribution, 〈m|Ĥ1|m〉, with Ĥ1 =
∑

ijkl Vijkl êij,kl.

The matrix elements of the weight generators, Êii, are simply just the occupancy of orbital

i in state |m〉
〈m′| Êii |m〉 = ni(m)δm′,m. (A.1)

So the one-body contribution is given by

〈m| Ĥ0 |m〉 =
∑
i

tii 〈m| Êii |m〉 =
∑
i

tii n(di), (A.2)

with n(di) =


0 for di = 0

1 for di = 1, 2

2 for di = 3

, (A.3)

where di is step-value of spatial orbital i in |m〉. The two-body contributions are a bit

more involved. Let’s consider the different cases:

i = j = k = l: reduces to the sum of doubly occupied orbitals

〈m| Ĥ1 |m〉 =
1

2

∑
i

Viiii 〈m| Ê2
ii − Êii |m〉 =

∑
i

Viiii δdi,3, (A.4)

since Ê2
ii = Êii for di = 1, 2.

i = j 6= k = l: only the ÊiiÊjj part of êij,kl = ÊijÊkl − δjkÊil remains, which reduces to a

product of occupation numbers

1

2

∑
i 6=j

Viijj 〈d| ÊiiÊjj |m〉 =
1

2

∑
i 6=j

Viijj
∑
m′

〈m| Êii |m′〉 〈m′| Êjj |m〉 = (A.5)

1

2

∑
i 6=j

Viijj 〈m| Êii |m〉 〈m| Êjj |m〉 =
1

2

∑
i 6=j

Viijj n(di)n(dj) =
∑
i<j

Viijj n(di)n(dj). (A.6)

The last relation comes from the fact that the sums are invariant under i, j exchange.

i = l 6= j = k: Also the exchange integral terms Vijji contribute to the diagonal matrix

elements, if the excitation 〈m| ÊijÊji |m〉 leads to the same CSF. The calculation of these
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Table A.1: Relevant terms of the exchange contribution to diagonal matrix elements.

di|dj 0 1 2 3

0 0 0 0 0

1 0 −1
2

(1 + A(bi, 2, 0)A(bj,−1, 1)
∏

k f(bk, dk)) −1
2

(1− A(bi, 2, 0)A(bj, 3, 1)
∏

k f(bk, dk)) -1

2 0 −1
2

(1− A(bi, 0, 2)A(bj,−1, 1)
∏

k f(bk, dk)) −1
2

(1 + A(bi, 0, 2)A(bj, 3, 1)
∏

k f(bk, dk)) -1

3 0 -1 -1 -2

matrix elements depends on the step-values between i and j and are obtained by Shavitt’s

graph rules.284 As mentioned in Sec. 3.4.1, the matrix elements between two CSFs for a

double excitation are given by the product

〈m′| êij,kl |m〉 =
∏
p∈S2

W (Qp; dp, d
′
p,∆bp, bp)×

∑
x=0,1

∏
p∈S1

Wx(Qp; dp, d
′
p,∆bp, bp) (A.7)

with S2 = (i, j) ∪ (k, l) − S2 being the non-overlap range and S1 = (i, j) ∩ (k, l) being

the overlap region of the indices of the involved generator êij,kl. The one-body segment

values W (Qp; dp, d
′
p,∆bp, bp) can be found in Table 3.7 of Sec. 3.4.1 and the two-body

segment values Wx(Qp; dp, d
′
p,∆bp, bp) are listed in Tables A.4 and A.5, which are taken

and modified from [284]. In the case relevant for diagonal terms the matrix elements

depending on the beginning di and end dj step-values are given in Table A.1 with

A(b, x, y) =

√
b+ x

b+ y
and f(b, d) =


1 for d = 0, 3

A(b, 2, 0)A(b,−1, 1) for d = 1

A(b, 0, 2)A(b, 3, 1) for d = 2

(A.8)

Unfortunately this requires the consideration of all step-vector and b-values between i

and j to calculate the diagonal matrix element.

∑
i 6=j

Vijji
2
〈m| êij,ji |m〉 = −

∑
i<j

Vijji
2

(
n(di)n(dj) +X(i, j)

)
(A.9)

The first term 1
2
n(di)n(dj) accounts for the first singlet coupled x = 0 matrix elements in

the Table A.1 and X(i, j) accounts for the triplet coupled x = 1 matrix elements. And

only yields a contribution if both di and dj are either 1 or 2

X(i, j) =



A(bi, 2, 0)
∏
k f(bk, dk)A(bj ,−1, 1) di = 1, dj = 1

−A(bi, 2, 0)
∏
k f(bk, dk)A(bj , 3, 1) di = 1, dj = 2

−A(bi, 0, 2)
∏
k f(bk, dk)A(bj ,−1, 1) di = 2, dj = 1

A(bi, 0, 2)
∏
k f(bk, dk)A(bj , 3, 1) di = 2, dj = 2

0 otherwise

(A.10)

and the rest gets accounted by the product of occupation numbers n(di)n(dj). In total
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the diagonal Hamilton matrix element for a CSF m is given by

〈m| Ĥ |m〉 =
∑
i

{
tii n(di)+Viiii δdi,3+

∑
j>i

[
Viijj n(di)n(dj)−

1

2
Vijji

(
n(di)n(dj) +X(i, j)

)]}
.

(A.11)

A.2.2 Off-diagonal matrix elements

The off-diagonal matrix element between two CSFs |m〉 and |m′〉 is given by

〈m′| Ĥ |m〉 =
∑
ij

tij 〈m′| Êij |m〉+
1

2

∑
ijkl

Vijkl 〈m′| êij,kl |m〉 (A.12)

Similar to the Slater-Condon rules57,297 for matrix element calculation between Slater

determinants, we need to identify the involved orbital indices (i, j, k, l) connecting m′ and

m and by comparing the orbital occupation differences between the two CSFs, ∆ni =

n(di)−n(d′i), already mentioned in Sec. A.1. There are the following possibilities for ∆ni,

which yield a possible non-zero matrix element between |m′〉 and |m〉:

∆ni = 0 for all orbitals, but |m′〉 and |m〉 differing for some orbitals, implies a full-start

RL into full-stop RL double excitation, type (2c) in Table 4.3, with only changes in the

open-shell orbitals. The matrix element can be expressed as

〈m′| Ĥ |m〉 =
1

2

∑
i 6=j

Vij,ji 〈m′| êij,ji |m〉+ Vji,ij 〈m′| êji,ij |m〉 =
∑
i 6=j

Vij,ji 〈m′| êij,ji |m〉 .

(A.13)

Because these full-start into full-stop excitations are symmetric concerning conjugation

of the generator indices and the molecular two-body integrals also, it reduces to

〈m′| Ĥ |m〉 = 2
∑
i<j

Vij,ji 〈m′| êij,ji |m〉 . (A.14)

To yield a non-zero matrix element between m′ and m the indices i and j have to engulf

all the differing orbitals, yielding a maximum lower index I, and a minimum upper index

J . Because full-start into full-stop excitations have the possibility to leave di unchanged,

basically all combination i ≤ I and j ≥ J in the summation have to be considered.

There has to be at least one difference between m and m′, or otherwise it would just be a

diagonal matrix element. The singlet coupled x0 matrix element branch can be discarded,

as a change in m implies ∆b = ±2 at least at one orbital. Furthermore the integral,

F (I, J), between the region of the first to the last change in m (I → J) is the same for

all matrix elements. The remaining product terms are given by the triplet coupled x1
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elements for non changing di value from orbital i to I and J to j given as

〈m′| Ĥ |m〉 = 2
∑
i<I
j>J

F (I, J)Vij,ji

I−1∏
k=i

RL(dk)

j∏
k′=J+1

RL(dj) with F (I, J) =
J∏
k=I

RL(dk),

(A.15)

where RL(di) indicates the triplet-coupled W1(Qi; di, d
′
i,∆bi, bi) matrix elements for a

mixed RL generator combination, depending on d and b given in Table A.5. Since we

calculate the matrix elements in the excitation generation step of the FCIQMC method,

see Sections 4.1, 4.2 and A.3, it is useful to formulate the matrix elements in terms of

already calculated terms, i.e. F (I, J), to reduce the computational effort of the spin-

adapted FCIQMC implementation.

∆nk = ±1 : for two spatial orbitals i, j. This implies a one-body contribution, as well as

two-body contributions with two indices being identical, over which has to be summed.

However, there is the additional constraint that the double excitation also has to lead to

the same orbital occupancy difference ∆n, which only leaves following terms:

〈m′| Ĥ |m〉 = tij 〈m′| Êij |m〉+
1

2

∑
k

(
Vij,kk 〈m′| êij,kk |m〉+ Vkk,ij 〈m′| êkk,ij |m〉

+Vik,kj 〈m′| êik,kj |m〉+ Vkj,ik 〈m′| êkj,ik |m〉
)
,

(A.16)

where the second line, involving weight generators, due to Vijkk = Vkkij, reduces to

〈m′| Êij |m〉
∑
k 6=i,j

Vij,kk n(dk). (A.17)

For k 6= (i, j) both the remaining terms yield (without the two-particle integrals for clarity

and êij,kl = ÊijÊkl − δjkÊil)

〈m′| ÊijÊii |m〉+ 〈m′| ÊijÊjj |m〉−〈m′| Êij |m〉 = 〈m′| Êij |m〉
(
n(di)+n(dj)−1

)
, (A.18)

which in total yields

〈m′| Êij |m〉

(∑
k

Vij,kk n(dk)− Vij,jj

)
. (A.19)

The third line in Eq. (A.16), due to Vij,kl = Vkl,ij and êij,kl = êkl,ij, reduces to:∑
k

Vik,kj 〈m′| êik,kj |m〉 (A.20)

and is a bit more involved to calculate. Depending on the relation of the index k to

(i, j), the two-body integral corresponds to certain sequences of generator combinations
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Table A.2: Modified matrix element contributions ∆(i) and ∆(j) necessary for the on-the-
fly matrix element calculation during the excitation process in the FCIQMC algorithm.

d′ d R RL ∆(i) L RL ∆(j)

1 0 1 -tA(0, 2) -tA(0, 2) 1 tA(2, 0) tA(2, 0)

2 0 1 tA(2, 0) tA(2, 0) 1 -tA(0, 2) -tA(0, 2)

3 1 A(1, 0) -tA(−1, 0) tA(−1, 1) A(0, 1) -tA(2, 1) -tA(2, 0)

3 2 A(1, 2) -tA(3, 2) -tA(3, 1) A(2, 1) tA(0, 1) tA(0,2)

d′ d L RL ∆(i) R RL ∆(j)

0 1 1 -tA(−1, 1) -tA(−1, 1) 1 tA(2, 0) tA(2, 0)

0 2 1 tA(3, 1) tA(3, 1) 1 -tA(0, 2) -tA(0, 2)

1 3 A(2, 1) tA(0, 1) tA(0, 2) A(0, 1) -tA(2, 1) -tA(2, 0)

2 3 A(0, 1) -tA(2, 1) -tA(2, 0) A(2, 1) tA(0, 1) tA(0, 2)

(assuming i < j for now, which is easily generalized):

k < i : LR→ LR→ R: type (1j) excitations in Table 4.3,

without a change in the spin-coupling in the overlap region (k, i) between the two CSFs

m and m′ . The ∆b = 0 branch matrix elements of the mixed generator RL contribute

multiplicatively−t2n(dk) terms, see Table A.5 and the x1 matrix element contributions are

x1 =
∏i−1

l=k RL(l), where RL(l) are just the normal mixed generator x1 product elements.

The product only goes until index i − 1 to still be able to formulate it in terms of the

single excitations Êij. To formulate it multiplicatively, special factors depending on the

step-vector d(i) have to determined, so the semi-stop x1 elements of RL(i)/LR(i) have

the same elements as the single starts R/L. The formulation in terms of Êij enables

us to reuse the already calculated one-body elements in the excitation generation of the

FCIQMC method, see Sections 4.1, 4.2 and A.3.

The modified values starting ∆(i) and end ∆(j) values for RL → RL → R and RL →
RL→ L type of excitation can be found in Table A.2. The rest of the double excitation

overlap matrix elements is the same. So for k < i the two-body matrix elements are given

by
i−1∑
k=1

(
−t2 n(dk) + ∆(i)

i−1∏
l=k

RL(dl, d
′
l)

)
, (A.21)

with ∆(i) from Table A.2 for the corresponding generator combination.

k = i : WR→ R: type (0c) excitations in Table 4.3,

which just reduce to 〈m′| Êij |m〉 (n(d′i)− 1), similarly:

k = j :

reduces to 〈m′| Êij |m〉 (n(dj)− 1).

k > j : R→ RL→ RL: type (1f) excitations in Table 4.3

As in the k < i case the x = 0 contribution is a multiplicative −t2 n(dk) factor. The
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Table A.3: Modified two-body terms at the single overlap site k used to formulate the
two-body contribution to the single excitations multiplicatively and allow an on-the-fly
matrix element calculation thereof.

Usual value Modified Value Multiplicative Factor rk

R L RR LL i < j i > j

d′d|∆b -1 +1 -1 +1 - 1 +1 -1 +1 -1 +1 -1 +1

00 1 1 1 1 0 0 0 0 0 0 0 0

11 -1 C(b, 0) C(b, 1) -1 1 0 0 1 -1 0 0 -1

12 -1/(b+ 2) − 1/(b+ 1) − 1 − 1 − -(b+ 2) − (b+ 1) −
21 − 1/b − -1/(b+ 1) − 1 − 1 − b − -(b+ 1)

22 C(b, 2) -1 -1 C(b, 1) 0 1 1 0 0 -1 -1 0

33 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

non-vanishing x1 overlap matrix elements are again calculated multiplicatively by the use

of modified semi-stop segments at j to formulate the matrix element in terms of single

excitations for R → RL → RL and L → LR → RL generator combinations. The

modified terms ∆(j) terms can also be found in Table A.2. Here only the step-vector

combinations, which lead to the ∆b = 0 branch in the overlap region are allowed, since

there is not step-vector difference above j. The full matrix elements are given by

n∑
k>j

(
−t2 n(dk) + ∆(j)

k∏
l=j+1

RL(dl, d
′
l)

)
, (A.22)

with ∆(j) from Table A.2 for the specific generator combination.

i(j) < k < j(i) : R→ RR→ R (L→ LL→ L): type (0b) excitations in Table 4.3

These types of generator combinations correspond to one-body terms actually. At index

k the usual product term for the Êij matrix element calculation takes on a different

than usual value. This modification can be applied multiplicatively, but depends on

dk, d
′
k, bk,∆bk and the type of generator(i < j or i > j). The modified values can be

found in Table A.3. By defining rk as

rk(d
′
k, dk, bk,∆bk) =



−t2 n(dk) + ∆(i)
∏i−1

l=k RL(dl, d
′
l) for k < min(i, j)

−t2 n(dk) + ∆(j)
∏l=k

j+1RL(dl, d
′
l) for k > max(i, j)

n(d′i)− 1 for k = i

n(dj)− 1 for k = j

entries from Table A.3 for k ∈ (i, j)

(A.23)

the total matrix element of a single excitation with one-body and two-body contributions

can be expressed as

〈m′| Ĥ |m〉 = 〈m′| Êij |m〉

(
tij − Vij,jj +

∑
k

Vij,kk n(dk) + Vik,kj rk(d
′
k, dk, bk,∆bk)

)
(A.24)
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in terms of the one-body coupling coefficient. The evaluation requires the calculation of

the single excitation matrix element 〈m′| Êij |m〉 through Shavitt’s graphical rules,283,284

and the summation of terms depending on d′k and dk entries of the two CSFs (although

in a sequential dependence, since rk depends on ∆bk). We can calculate the rk terms

similar to Shavitt’s matrix product terms with rk (A.23) in the excitation range given in

Table A.3 during excitation generation. This requires an O(N) effort in calculation of rk,

since only occupied orbitals contribute.

∆n = ±1 : at two orbitals and additional step-vector differences ∆d below or above the

excitation range, correspond to (1e, 1f, 1i) or (1j) excitations of Table 4.3, depending

on the ordering of the remaining indices. These are d = 1, d′ = 2, and vice versa, step-

vector differences outside the range (i, j), corresponding to double excitations with mixed

generator full-starts RL or full-stops RL. Similar to the Σ|∆n| = 0 case all possible

excitations connecting the two CSFs have to engulf the first step-vector change, I, if it

occurs before min(i, j) or the last step-vector change, J , if it is after max(i, j). However,

all mixed full-starts before I or after J have to be considered too, since there is the

possibility of a RL(d = 1, d′ = 1) or RL(d = 2, d′ = 2) start with non-zero x1 matrix

element.284 So the matrix element is given by:

i−1∑
k<I

∆(i)F (I, i) 〈m′| Êij |m〉
I∏
l=k

RL(dl) for I < min(i, j) (A.25)

∑
k>J

∆(j)F (j, J) 〈m′| Êij |m〉
n∏
l>J

RL(dl) for J > max(i, j), (A.26)

with RL(dl) again being the x1 matrix elements, F (I, i)/F (j, J) being the always involved

x1 matrix elements engulfing all step-vector changes in the overlap region and ∆(k)/∆(k)

being the modifying terms to express it in terms of single excitation matrix elements Êij,

see Table A.2.

∆ni = ±2 at two spatial orbital i and j implies a full-start into full-stop double excitation

with two alike generators (RR→ RR or LL→ LL, corresponding to type (2a) and (2b)

in Table 4.3). This completely specifies the indices and the full matrix element is just

given by

〈m′| Ĥ |m〉 = Vij,ij 〈m′| êij,ij |m〉 (A.27)

and calculated with Shavitt’s graphical rules.284 The order of the orbitals, where electrons

are removed and added, determines the type of generators.

∆n 6= 0 at three different orbitals with one ∆n = ±2 and two ∆n = ∓1, corresponds to

type (1c, 1d, 1g) or (1h) excitations of Table 4.3. This determines all four indices, with

two indices being identical, with ∆nk = ±2 and ∆ni = ∆nj = ∓1. Leaving the matrix
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element to be:

〈m′| Ĥ |m〉 =

Vik,jk 〈m′| êik,jk |m〉 if ∆nk = −2

Vki,kj 〈m′| êki,kj |m〉 if ∆nk = +2
(A.28)

∆ni 6= 0 at four different orbitals with two times ∆n = 1 and two times ∆n = −1

values, corresponds to type (3a, 3b, 3c, 3d, 3e) or (3e) excitations of Table 4.3. This

also completely determines all four indices of the excitation, but there are four different

combinations of these indices which can lead to the same state, where two of them,

however, are equivalent. The relation and ordering of these indices determines the type

and combinations of generators, with the total matrix element given by

〈m′| Ĥ |m〉 =
1

2
〈m′|

(
Vli,kj êli,kj + Vkj,li êkj,li + Vki,lj êki,lj + Vlj,ki êlj,ki

)
|m〉

= 〈m′| (Vli,kj êli,kj + Vki,lj êki,lj) |m〉 , (A.29)

where for orbitals l and k, ∆nl = ∆nk = +1 and for i and j, ∆ni = ∆nj = −1.

The relative positions of the ∆n = +1 and ∆n = −1 orbitals determines the generator

combinations and type of excitations involved, see A.1.

For alike generator combinations, e.g. R→ RR→ RR→ R, we have to take into account

the sign flip due to an exchange of operator indices. Since êik,jl and êil,jk (i < j < k < l),

both contribute to the same excitation. As already pointed out by Paldus,33,236 the

Coulomb and exchange type contributions can be expressed in terms of the same x = 0

and x = 1 matrix element contributions with

w0 =
∏
k∈S2

W (Qk; d
′
k, dk,∆bk, bk)

∏
k∈S1

W1(Qk; d
′
k, dk, 0, bk) (A.30)

w1 =
∏
k∈S2

W (Qk; d
′
k, dk,∆bk, bk)

∏
k∈S1

W1(Qk; d
′
k, dk,∆bk, bk), (A.31)

where w0 6= 0 only if ∆bk = 0,∀k ∈ S1. By sticking to the convention to use the standard

order of operators, as indicated in Table 4.3, the contribution of an exchange of orbital

indices in the generator can be expressed as

〈m′| êjl,ik |m〉 = w0 + w1 (A.32)

〈m′| êjk,il |m〉 = w0 − w1, (A.33)

with a type (3a) excitation from Table 4.3 as an example. The total matrix element is

then given by

〈m′| Ĥ |m〉 = w0 (Vjlik + Vjkil) + w1 (Vjlik − Vjkil) , (A.34)

The case of alternating orbital occupancy differences and ∆n = ±1→ ∆n = ∓1 involve no

sign change in mixed generator semi-start and semi-stops for the x1 matrix element. These

type (3c-3f) excitations of Table 4.3 also contain non-overlap generator combinations,

indicated by the subscript 0. Because the non-overlap double excitations are contained
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as the ∆bk = 0,∀k ∈ S1 special case of these mixed generator excitation, we do not treat

them explicitly, but stick to the convention to always use the mixed generator combination

in the excitation generation, see Sec. A.3. For an excitation, which left the ∆bk = 0 path

at some point in the overlap region, only the x = 1 matrix element contributes. If

∆bk = 0,∀k ∈ S1, the Coulomb type contribution can be obtained by the x = 0 term of

the exchange matrix element236

〈m′| êil,kj |m〉 = −w0

2
+ w1, 〈m′| êij,kl |m〉 = w0. (A.35)

otherwise w0 = 0. The total matrix element is then given by

〈m′|Ĥ|m〉 = w0

(
−Vilkj

2
+ Vijkl

)
+ w1 Vilkj. (A.36)

∆n 6= 0 at more than four different spatial orbitals or ∆b 6= 0 outside of excitation range

for Σ|∆n| = 4, yields a zero matrix element, as such excitations cannot be obtained by a

single application of the Hamiltonian.

For completeness of this manuscript the extensively used remaining two-body segment

value tables, derived by Shavitt,283,284 are listed here, where the entries are given in terms

of the auxiliary functions A and C (3.84) given in Sec. 3.4.1 and the additional (with an

implicit dependence on the b value of the given CSF |m〉)

B(p, q) =

√
2

(b+ p)(b+ q)
, D(p) =

√
(b+ p− 1)(p+ p+ 2)

(b+ p)(b+ p+ 1)
and t =

1√
2
. (A.37)

The variable µ in the listed Tables A.4 and A.5 is related to the concept of Hamiltonian

repartitioninig,284 which is not discussed in this manuscript, and can be assumed to be

zero, µ = 0.
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Table A.4: Two-body segment values involving two raising or lowering generator. The
RR and LL segment types have not been split into the x = 0, 1 terms. The segment
types marked with an asterisk use lower signs where shown, the others use the upper sign.
Taken and modified from [284]. (Permission to reproduce this table has been granted by
Springer Nature.)
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Table A.5: Two-body segment values involving one raising and one lowering generator. The
RL and RL segment types have not been split into the x = 0, 1 terms. The relative sign
of the contribution is independent of order of the generators for two mixed contributions.
Taken and modified from [284]. (Permission to reproduce this table has been granted by
Springer Nature.)
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A.3 Weighted Orbital Choice with GUGA Restric-

tions

A note on the weighting of the integral contribution to the orbital picking process: As

one can see in Eq. (A.32) and (A.35) it is not as easy as in a SD based implementation

to weight an integral contribution of orbitals by the exact matrix element, Vikjl for spin-

opposite and Vikjl−Viklj for spin parallel excitations, as it is done in the current FCIQMC

implementation. Since the relative sign of the w0 and w1 contribution (A.30, A.31) de-

pends on the chosen excitation |m′〉 and can not be easily predetermined and there is no

notion of a ms quantum number in a spin-adapted calculation. Our choice was to weight

the integral contribution by the magnitude of the integrals |Vikjl| + |Viklj| to capture the

strongest couplings at least. This leads to some inefficiencies in the excitation generation

of the CSF based implementation. See Sec. 4.3 for a study on the effect.

A.3.1 Restrictions on the Orbital Choice for Single Excitations

To ensure at least one possible non-zero excitation, Êij |m〉, we have to place some addi-

tional restriction on the choice of orbital (i, j) compared to a SD-based implementation.

The idea is to first pick an electron in an occupied spatial orbital j at random with

p(j) = 1/N . Depending on the step-value dj certain restriction on the to-be-picked or-

bital i are placed. A general restriction is that i must not be doubly occupied di 6= 3.

If dj = 3, since both ∆b branches can end at dj for raising generators R (i < j) and

also both branches can start for a lowering generator L (i > j) there are no additional

restrictions on the orbital i, except di 6= 3.

For dj = 1 there is only a ∆bj = +1 start L and a ∆bj−1 = −1 end R possible. So

there is the restriction, that di must be 0, which allows both ∆b branches to start or to

end, or di = 2, which would lead to the correct ∆bi = −1 start for R or would allow the

∆bi−1 = +1 end for L. A di = 1 value is only allowed, if there is a valid switch possibility

dk = 2 in the range (i, j). For a chosen dj = 2 electron orbital the restrictions are similar

with di = {0, 1} being valid in general, and di = 2 only if a switch possibility dk = 1

for k ∈ (i, j). The actual restriction is implemented by finding the adjacent opposite

spin-coupled orbitals ilower and iupper for a dj = {1, 2} and only allowing di = dj to be

picked if i < ilower or i > iupper. A flow-chart of this decision-making process is given in

Fig. A.3.

If we want to make use of point group symmetry it is much easier than suggested in the

literature,39 to just restrict the choice of orbital i from the symmetry allowed orbitals nj

corresponding to the picked electron orbital j.



A. The Graphical Unitary Group Approach 181

pick occ. orbital (j) with pj = 1/N

both ∆b = ±1 possible

dj = 3

pick hole (i)

no restrictions

Êij : R Êij : L

i < j i > j

∆bj
!
= +1 L(j) & ∆bj−1

!
= −1 R(j)

dj = 1

pick hole (i)

both ∆bi = ±1

∆bi = −1 R(i)
∆bi−1 = +1 L(i)

∆bi = +1 R(i)
∆bi−1 = −1 L(i)

di = 2 di = 1
di = 0

only possible if switch
dk = 2 in (i, j)

i < j : R
i > j : L

∆bj
!
= −1 L(j) & ∆bj−1

!
= +1 R(j)

dj = 2

pick hole (i)

both ∆bi = ±1

∆bi = −1 R(i)
∆bi−1 = +1 L(i)

∆bi = +1 R(i)
∆bi−1 = −1 L(i)

di = 1di = 2
di = 0

only possible if switch
dk = 1 in (i, j)

i < j : R
i > j : L

Figure A.3: Flow-chart of the decision-making process to find a valid index combination
(i, j) to ensure at least one non-zero single excitation Êij |m〉 and determine the type of
generator, R or L, depending on the order of i and j.
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A.3.2 Restriction on the Orbital Choice for Double Excitations

The excitation generation for doubles is a bit more involved, but due to the product

structure of the matrix elements (3.98). We follow the same approach as for single excita-

tions to pick the four orbitals of êij,kl in such a manner to have the probability p(ijkl) be

related to the integral contribution of the Hamiltonian matrix element and at the same

time ensure that at least one valid excitation can be reached.

We first pick the ordered electron pair (j < l) at random with a probability p(jl) =

1/Npairs, where Npairs is the number of electron pairs in the simulation. The first orbital

(i) to excite to is then picked out of all, non-doubly occupied di 6= 3 orbitals, weighted with

the Cauchy-Schwarz inequality based approximation139,300 of the integral contribution

Vijkl, see Sec. 2.3.8

The major change, compared to SD based implementation, now comes only in the choice

of the second orbital (k) to excite to. Here we place the restrictions depending on the

possible used spatial symmetry and the additional restriction, due to the UGA to obtain

non-zero excitations. Additionally, we restrict the picking of orbital (k) in such a way that

we do not pick quasi-single excitations, which are already taken account of in the single

excitation matrix elements, explained in Section A.2.2. The overall restriction dk 6= 3

remains of course.

To formulate the conditions for a valid orbital index choice, (i, j, k, l), we have to look

at the properties of the non-zero two-body segment shapes. The semi-start segments,

LL,RR, behave similar to single segment shapes concerning the restrictions on the in-

coming and out-going ∆b values of an excitation and are listed in Table A.6. And similar to

the end of a single excitation there are certain restriction for non-zero two-body elements

at the end of the overlap range, depending on the type of the two alike generators, see

Table A.7. As one can see in these tables these segments behave like a single-excitation

starts for an in-going ∆bk−1 = 0 branch and like a single excitation end segment for the

approaching ∆bk−1 = ±2 branches.

For two-body generators with identical starting indices, êij,ik, only the ∆bk = 0 branch

contributes, due to a zero x = 1 matrix element in the overlap region.284 In addition only

a ∆bk = 0 branch leads to a non-zero matrix element with two coinciding upper indices,

êij,kj. This means that for the RR or LL segments only the ∆bk = 0 branch can be chosen.

So these type of double excitations can be treated very similar to single excitations, since

the x = 0 contribution is very easy to compute, (−1n2 , with n1 being the number of singly

occupied orbitals in the overlap region) and are only non-zero if d′k = dk in the overlap

range. So no switch decisions have to be made in the excitation generation.

The case of mixed generators R+L is a bit more involved. A simultaneous start eij,ki acts

similar to an usual double intermediate segment value, except that a di = 0 value leads

to a zero matrix element, see Tables A.8 and A.5. And similar to intermediate segment
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Table A.6: LL,LL∗ and RR,RR∗ contributions at the overlap range start. ∗ indicates
the sign change of the x = 1 matrix element, depending on the order of operators.
N ′k = Nk − 2 for two lowering generators and N ′k = Nk + 2 for two raising generators.
And RR and LL intermediate segments in the overlap region of a double excitation,
depending on ∆bk−1.

LL/LL∗ RR/RR∗ RR/LL

∆bk−1 : -1 +1 -1 +1 0 -2 +2

d′ d ∆bk d′ d ∆bk d′ d ∆bk
0 1 0 +2 1 0 -2 0 0 0 0 -2 +2

0 2 -2 0 2 0 0a +2b 1 1 0 -2 +2

1 3 -2 0 3 1 0 +2 2 1 +2b 0a −
2 3 0a +2b 3 2 -2 0 1 2 -2 − +2b

2 2 0 -2a +2b

3 3 0 -2 +2
a No bk restriction, since ∆bk−1 = −1 or ∆bk−1 = −2.
b This path is only possible if bk > 1, otherwise Sk < 0.

Table A.7: Segment value restriction for the end of the overlap range for two lowering
generators LL,LL

∗
, and two raising generators RR,RR∗, depending on ∆bk−1 value.

N ′k = Nk±1 depending on the generator type. ∗ indicated that the x = 1 matrix element
contribution has opposite sign for exchanged order of generators.

LL/LL
∗

RR/RR∗

d′ d ∆bk−1 ∆bk d′ d ∆bk−1 ∆bk

1 0
0 -1

0 1
0 +1

+2 +1 -2 -1

2 0
0 +1a

0 2
0 -1

-2 -1 +2 +1

3 1
0 +1

1 3
0 -1

-2 -1 +2 +1

3 2
0 -1

2 3
0 +1a

+2 +1 -2 -1

a Only possible if bk > 0, otherwise Sk < 0.



184 A.3. Weighted Orbital Choice with GUGA Restrictions

Table A.8: RL starting segments, where there is no change in the orbital occupation
number N ′k = Nk. And RL end segment restrictions, depending on the ∆bk−1 value.

RL RL

d′ d ∆bk ∆bk−1

1 1 0 0
2 1 +2a -2
1 2 -2 +2
2 2 0 0
3 3 0b 0b

a Only for bk > 1.
b x = 1 matrix element is

zero.

values of alike generators in the overlap region, the x = 0 matrix elements are zero for

the ∆bk = ±2 branches.

As one can see in Table A.5 of the mixed two-body segment values, the x = 1 contribution

is zero for di = 3, but not for the ∆bk = 0 branches of di = {1, 2}. This leads to a

major complication in the implementation of CSFs in the FCIQMC algorithm through

the GUGA approach. These contributions with no change in step-value with a non-

zero matrix element correspond to an exchange type contribution to double excitations.

Since in the FCIQMC excitation generation it is necessary to uniquely assign a definite

probability p(m′|m), different starting orbitals i′ < I, with I indicating the first step-

value change ∆dI , can contribute to an excitation with a RL start. The matrix element

influence was mentioned in Section A.2, but also the probabilities, p(i′), for all possible

other starting orbitals i′ < I have to be accounted for. Similarly for an RL end, all other

possible j′ > J , with J indicating the last step-value change ∆dJ , ending orbitals have

to taken into account. And for a pure exchange type excitation (type 2c in Table 4.3)

RL → RL all combinations (i′ < I, j′ > J) of possibly contributing orbitals have to be

considered in the matrix element and generation probability computation. See A.2 for

more details on the matrix element calculation of these excitations.

Otherwise a RL segment behaves similar to an LL and RL to an RR in terms of d′k, bk

and ∆bk−1 restrictions, except the number of electrons in N ′k = Nk. Also the intermediate

RL segments behave as LL and RR and the RL is equivalent to LL and LR to RR

respectively. Except the electron number difference becomes the corresponding value

N ′k = Nk ± 1 of the ongoing excitation (R in the case of RL and L for LR). It should

also be noted, that a ∆bk = 0 branch can end at any dj 6= 0 value, whereas ∆bk = −2

is restricted to dj = 1 and ∆bk = +2 to dj = 2, to be able to align the Sk value of

|m′〉 and |m〉, so they coincide outside of the range of the generator êij,jl. Since ∆bk = 0

already indicates |m′〉 = |m〉 in the overlap range, this issue is no problem in a direct

CI calculation with CSFs, but is burdensome to implement in FCIQMC, since we want

to be able to get one out of all possible excitations for a given CSF |m〉 and assign it

a unique generation probability. So we also have to take into account all other possible
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index combinations, which would be able to lead to this excitation and sum their matrix

elements of course, but also recompute the probability.

Due to the uniqueness for most type of excitations, this is no problem, but only in the

case of these exchange type excitations with coinciding indices and a RL generator com-

bination. Unfortunately we have not yet found a more elegant way to treat these cases,

except implement it in the most efficient way. With a heavy re-usage of terms to avoid

an O(N2) or even O(n2) computational cost of these excitations.

A.3.3 Orbital Picking and Excitation Identification

In the following, the work flow of picking a valid index combination (i, j, k, l) for a non-

zero double excitation of a CSF |m〉 in the FCIQMC method is presented. A flow-chart

of the decision-making process is shown in Fig. A.4.

Both electron indices (j < l) and the first hole index (i) are picked with uniform or a

weighted probability. If both picked electrons are in the same spatial orbital j = l→ dj = 3,

similar restrictions as for single excitations apply, for the remaining orbitals i and k. Of

course both orbitals i and k have to be non-doubly occupied. This applies in general, in-

dependent of the relation of electron orbitals j and l and their step-value dj, dl. And i = k

is only possible if dk = 0, since both electrons will be excited to the same spatial orbital.

Since both electrons get removed from the same orbital the only possible excitation types

are (1b,1c,1d,2a,2b) of Table 4.3. If i = k the type of excitation is (2a) if i > j, or (2b)

if i < j, requiring di = 0. For i 6= k the same restrictions as for single excitations apply,

that di = dk = 1 is only possible if a switch possibility dm = 2 in the range (i, k) and vice

versa for di = dk = 2. The type of excitation only depends on the order of the involved

indices. As already mentioned, all these excitations require ∆bm = 0 in the overlap range.

With the trivial case of type (1b) excitation with a single orbital overlap range. Which

make the calculation of the excitation very similar to single excitations.

If the electron indices are not equal j 6= l, the picking of the remaining orbitals k and i

depends more strongly on the step-values of the already chosen orbitals (j, l).

If dj = dl = 3 there is no additional restriction on orbital k, since in except of b value

restrictions on starts of a doubly occupied orbital (∆b = +1 branch forbidden due to

b = 0, e.g.) all restrictions mentioned in the previous Section A.3.2 can be accounted for,

due to the flexibility of the dj = dl = 3 step-values.

If i = k, depending on the order of the indices this leads to excitations of type (1a,1d) or

(1g), since i 6= j, l due to dj = dl = 3. These excitations again can be easily treated, due

to the single overlap region (1a) or a necessary ∆bm = 0 in the overlap region.

If i 6= k all 4 indices are different, leading to a type (3*) excitation depending on the order

of the indices. Where again, the exchange type excitation is chosen by definition and not
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a possibly non-overlap double excitation (3c0,3d0,3e0,3f0).

If dj = 3, dl = {1, 2}: Depending on if the already picked first orbital to excite to i = l,

orbital k must be restricted to k < l. This is because k > l would lead to an exchange

contribution to a single excitation, which is already taken into account for in the singles

matrix elements. This leads to excitations of type (1e) or (1f) depending on the order of k

and j. If i > l orbital k 6= l since this again would lead to an already accounted exchange

contribution to a single excitation. If i = k it is an (1d) excitation otherwise it is one of

the type (3*) depending on the relation of the indices. If i < l there is no restriction on

the indices for k and this can lead to a variety of excitations.

If dj = {1, 2}, dl = 3 : There are similar restrictions considering the already picked orbitals.

If i = j, k must be picked k > j to avoid choosing already accounted for exchange

contributions to single excitations. And if i < j k must not be j, otherwise there are no

additional restrictions.

If both dj = {1, 2} and dl = {1, 2} are singly occupied the most stringent restrictions

apply. If i = l there should be a possible switch between the already picked j and l if

both have the same step-value dj = dl, since otherwise it would not be possible to fulfil

the ∆b criteria at the end of an excitation to lead to a non-zero excitation. Additionally,

orbital k has to be lower than i, otherwise it is again an exchange contribution to a

single excitation. Depending on the order of the orbitals, this leads to type (1e,1f,2c)

excitation, which, already mentioned, needs additional re-computation of matrix element

and generation probability contribution.

If i = j, there also must be a switch possibility for dj = dl between jandl and k > j. This

leads to type (1i,1j,2c) excitations. With the necessity of recalculation of matrix element

and generation probability contributions.

If i > j orbital k must not be l to avoid an exchange contribution to singles and similarly

if i < j, k must not be j. And k can only coincide with j for i > j, if there is a switch

possibility between j and l, if dj = dl. And similar for i < j, k = l is only possible if

dj 6= dl or there is a switch possibility between j and l. Otherwise no restrictions are

place on the picking of orbital k and the type of excitation depends on the order of the

indices and can lead to all sort of excitation types in Table 4.3.

In the whole picking process, since we allow the empty orbitals to be picked in any order,

in addition to p(i|jkl) we also have to recompute p(k|ijl) of having picked the orbitals

in the opposite order, since they lead to the same possible excitation. This increases the

generation probability by 2 in general, but introduces the effort to recompute. We could,

similar to the electron orbitals j and l, decide to pick only orbitals i < l, which would

also make the identification of the excitation type easier.
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pick two occ. orbitals (j < l) with p(jl) = 1/Npairs

pick empty orbital (i) with pi = 1/(n−N)

Pick orbital (k)
No add. restrictions

j = l

dj = dl = 3

i = k possible

di = 0

i 6= k

di 6= 0

same restrictions
as for singles (A.3)

i 6= k

i < j : type (2a)
i > j : type (2b)

i = k

i < j < k : type (1b)
i < k < j : type (1c)
j < i < k : type (1h)

Pick orbital (k)
Additional restrictions

j 6= l

No restrictions,
since all ∆b allowed

dj = dl = 3

i < j < l : type (1g)
j < i < l : type (1a)
j < l < i : type (1d)

i = k

(i, j, k, l) order
determines
type (3*)

i 6= k
position of (i)?

dj = 3 dl = {1, 2}

k < lk 6= l

no restrict.
(i, j, k, l) order
→ exc. type

i = li > l
i < l

single
otherwise

k < j : (1f)
j < k : (1e)

i = k : (1d)
otherwise

(i, j, k, l) order
type (3*)

position of (i)?
dj = {1, 2}

dl = 3
k > j

k 6= j

no restrict.
(i, j, k, l) order
→ exc. type

i = j

i < j

i > j

single
otherwise

k < l : (1j)
l < k : (1i)

i = k : (1d)
otherwise

(i, j, k, l) order
type (3*)

position of (i)?
dj = {1, 2}

dl = {1, 2}

dj = dl?
i = l

Possible switch
in (j, l)?

yes

k < i
no

yes

single
otherwise

k < j : (1f)
k = j : (2c)
k > j : (1e)

dj = dl?
i = j

Possible switch
in (j, l)?

yes

k > j
no

single
otherwise

yes

k < l : (1j)
k = l : (2c)
k > l : (1i)

k 6= l

k 6= j

i > l

i < j

single
otherwise

single
otherwise

dj = dl?

Possible switch
in (j, l)?

yes

k 6= j!

no

(i, j, k, l) order
determines exc. type

no

yes

dj = dl?

Possible switch
in (j, l)?

yes

k 6= l!

no

(i, j, k, l) order
determines exc. type

no

yes

no
restrictions

otherwise

(i, j, k, l) order
determines
exc. type

Figure A.4: Flow-chart of the decision-making process to find a valid index combination
(i, j, k, l) to ensure at least one non-zero double excitation êij,kl |m〉 and identify the
excitation type based on these indices.





B
The Similarity Transformed Hamiltonian

B.1 Analytic Optimization of J in the Thermody-

namic Limit at Half-Filling

The results in this chapter were obtained in collaboration with Hongjun Luo and Ali Alavi

and parts of the remaining chapter are included in the published article:69

Compact numerical solutions to the two-dimensional repulsive Hubbard model obtained via

nonunitary similarity transformations. Werner Dobrautz, Hongjun Luo and Ali Alavi,

Phys. Rev. B 99, 075119 (2019)

For an infinite system at half-filling, we define

T0(k) =
1

M

∑
q

Θ(εF − εq)Θ(εq+k − εF ), (B.1)

T1(k) =
1

M

∑
p

Θ(εF − εp)Θ(εp−k − εF )
∑
d

ei(p−k)·d, (B.2)

T2(k) =
1

M

∑
p

Θ(εF − εp)Θ(εp−k − εF )
∑
d

eip·d. (B.3)

The 2-body contributions of Eq. (5.25) in Section 5.3.2 can be expressed as

U

2

1

M

∑
k

T 2
0 (k)− t

M

(
(eJ − 1)

∑
k

T0(k)T1(k) + (e−J − 1)
∑
k

T0(k)T2(k)

)
= 0. (B.4)

In the thermodynamic limit (M → ∞) the summation in the expression of the Tm fac-

tors (B.1-B.3) become integrals

1

M

∑
q

−→ 1

(2π)d

∫
ddq.

For an unpolarized system at half filling, the factor Θ(εF − εq) leads to a square region

in the kx − ky plane and Tm(k) integrals can be easily calculated after a rotation of

coordinates

k′x =
1√
2

(kx − ky), k′y =
1√
2

(kx + ky). (B.5)
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With this rotation, T0 is found to be symmetric with respect to k′x → −k′x and k′y → −k′y,
so it reduces to a function of |kx| and |ky|

T0(k) =
1

(2π)2

∫
Θ(εF − εq)Θ(εq+k − εF )d2q (B.6)

=
1

(2π)2

(∫ −π/√2+|k′x|

−π/
√

2

∫ π/
√

2

−π/
√

2+|k′y |
dq′xdq

′
y +

∫ π/
√

2

−π/
√

2+|k′x|

∫ −π/√2+|k′y |

−π/
√

2

dq′xdq
′
y

)
(B.7)

=
1

(2π)2

(√
2π(|k′x|+ |k′y|)− 2|k′xk′y|

)
(B.8)

=
1

(2π)2

(
π(|kx − ky|+ |kx + ky|)− |k2

x − k2
y|
)
. (B.9)

With the coordinate rotation (B.5), the integrand of T1 can be factorized as∑
d

ei(p−k)·d = cos(px − kx) + cos(py − ky)

= cos

(
1√
2

(p′x − k′x) +
1√
2

(p′y − k′y)
)

+ cos

(
1√
2

(p′x − k′x)−
1√
2

(p′y − k′y)
)

= 2 cos

(
1√
2

(p′x − k′x)
)

cos

(
1√
2

(p′y − k′y)
)
,

and T1 can also be found as a function of |kx| and |ky|

T1(k) =
16

(2π)2

[
cos

(
kx − ky

2

)
cos

(
kx + ky

2

)
− 1

]
. (B.10)

Similarly T2 can be calculated as

T2(k) =
16

(2π)2

[
1− cos

(
kx − ky

2

)
cos

(
kx + ky

2

)]
= −T1(k). (B.11)

The exchange part of the three body contribution in (5.25) to the correlation energy can

be calculated as (using here again the rotation (B.5) for p)

1

M2

∑
pqkσ

(
np,σnq+k,σ̄nq,σ̄

∑
d

cos(p · d)eik·d

)

=
1

M

∑
pkσ

(
np,σ(

1

2
− T0(k))

∑
d

cos(p · d)eik·d

)

=
2M

(2π)4

∫ ∫ π/
√

2

−π/
√

2

dp′xdp
′
y

∫ ∫ π

−π
dkxdky ×

(
1

2
− 1

(2π)2

(
π(|kx − ky|+ |kx + ky|)− |k2

x − k2
y|
))

×
(

cos(
p′x + p′y√

2
) cos(kx) + cos(

p′x − p′y√
2

) cos(ky)

)
=

32M

π6
. (B.12)
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The final results are

T0(k) =
1

(2π)2

(
π(|kx − ky|+ |kx + ky|)− |k2

x − k2
y|
)
, (B.13)

T1(k) =
16

(2π)2

[
cos

(
kx − ky

2

)
cos

(
kx + ky

2

)
− 1

]
, (B.14)

T2(k) = −T1(k), (B.15)

and the summations can also be calculated as integrals

1

M

∑
k

T 2
0 (k) =

5

72
, (B.16)

1

M

∑
k

T0(k)T1(k) = −16 + π4

π6
. (B.17)

JTDLopt can be obtained by solving

5U

144
+ t

16 + π4

π6

(
(eJ − e−J

)
= 0, (B.18)

which, for small U/t, can be approximated as

JTDLopt = argsinh(− 5U

288t
× π6

16 + π4
) ≈ −0.14717

U

t
. (B.19)

At half-filling Hartree-Fock energy of the original Hubbard Hamiltonian (5.18), with k = 0

in the two-body term,

EJ=0
HF =

〈
−t
∑
k,σ

εknk,σ

〉
HF

+
U

2

〈
1

M

∑
p,q,σ

np,σnq,σ̄

〉
HF

(B.20)

results to

EJ=0
HF = M

(
−t 64

(2π)2
+
U

4

)
(B.21)

in the thermodynamic limit (TDL). The additional contributions arising due to the sim-

ilarity transformation

EJ
HF =

〈
−2t

cosh(J − 1)

M

∑
p,q,σ

εpnp,σnq,σ̄

〉
HF

−

〈
2t

cosh(J − 1)

M2

∑
p,q,k,σ

εp+knp,σnq+k,σ̄nq,s̄

〉
HF

(B.22)

can be estimated, with cosh(J − 1) ≈ J2 for small J and Eq. (B.12), as

EJ
HF ≈ −tJ2M

(
16

(2π)2
+

64

π6

)
. (B.23)

Hence, the energy per site in the TDL for an unpolarized system at half-filling is given
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by

ETDL
opt = −t 64

(2π)2
+
U

4
− tJ2

(
16

(2π)2
+

64

π6

)
. (B.24)
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