Reducing the computational footprint on quantum hardware by a correlated wavefunction Ansatz

Werner Dobrautz Chalmers University of Technology

May 28, 2023

CHALMERS

Motivation

- Correlated Ansatz to reduce the computational footprint on quantum hardware

Conventional Results

Outlook

Motivation

Bottom-up Design of Quantum Materials

Iron-Sulfur clusters: electron transfer proteins

×

 $\label{eq:femodel} \begin{array}{l} \mathbf{FeMoCo}^{\dagger} \colon \mathrm{primary\ cofactor} \\ \mathrm{of\ nitrogenase} \end{array}$

YBCO^{*}: Unconventional high- T_c superconductivity

(Iron) Porphyrins: oxygen and electron transport

Interesting systems usually challenging systems for computational approaches.

Accurate theoretical understanding at nano-scale for bottom-up materials design!

Ab Initio Quantum Chemistry – Electronic Structure Theory

All necessary information of a quantum system contained in electronic molecular Hamiltonian (Born-Oppenheimer approx., atomic units and first quantization)

$$\hat{H} = \underbrace{-\sum_{i} \nabla_{\mathbf{r}_{i}}^{2}}_{\text{kinetic energy of } e^{-}} + \underbrace{\frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}}_{e^{-} - e^{-} \text{ repulsion}} - \underbrace{\sum_{I,j} \frac{Z_{I}}{|\mathbf{R}_{I} - \mathbf{r}_{j}|}}_{\text{Potential}} \xrightarrow{\mathbf{O} \times \mathbf{R}_{ij} \times \mathbf{A}}_{\mathbf{Potential}}$$

Electronic properties: Ground- and low-lying excited state properties, energy differences, polarization, response functions, ...

 $\underline{\text{Target:}}$ High / chemical accuracy to ensure predictability, interpretability and comparison with experimental results

Task: Solve the Schrödinger equation derived from first principles

$$\hat{H} |\Psi(\mathbf{r}_1, \dots, \mathbf{r}_n)\rangle = E |\Psi(\mathbf{r}_1, \dots, \mathbf{r}_n)\rangle$$

Problems for accurate description: Cusp condition and hierarchy of methods and basis set size

Cusp condition: Singularity of Coulomb potential, $\frac{1}{r_{ij}}$, for $r_{ij} = 0 \rightarrow$ non-differentiable behavior of $\Psi(\{\mathbf{r}\})$ at electron coalescence, so kinetic energy, $-\nabla_{\mathbf{r}}$, cancels

Short range behavior → dynamic correlation. Important for quantitatively accurate quantum chemistry. Necessitates large basis set expansion → costly for highly accurate methods. Adds another axis of complexity!
Kato, Communications on Pure and Applied Mathematics 10 (2), 151 (1957)

Exponential scaling of Full Configuration Interaction

To make the electronic structure problem tractable: map it to atomic/molecular orbitals in quantum chemistry. Post-HF/DFT: Multi-determinant wave function: $|\Psi\rangle = |\Phi_{HF}\rangle + \sum_{i} c_{i} |\Phi_{i}\rangle$. FCI \Rightarrow exact solution in a given basis set

All possible excitations from HF determinant

Number of possible states for given number of electrons, N, and orbitals, $n, \sim {N \choose n}$

#orbitals	#electrons	#states
2	2	4
4	4	36
8	8	4900
12	12	$\sim 8\cdot 10^5$
16	16	$\sim 16\cdot 10^6$
18	18	$\sim 2\cdot 10^9$

Quantum Computing

Remember: exponentially scaling FCI $|\Psi\rangle \sim {N \choose n}$. > 20 electrons and 20 orbitals can not even store wf. Due to **entanglement** and **superposition**: *n* qubits can encode $\sim 2^n$ states:

qubit1	qubit2	$ q_1 angle\otimes q_2 angle$ (
$(\left 0\right\rangle_{1}+\left 1\right\rangle_{1})$	$\otimes (\left 0\right\rangle_{2} + \left 1\right\rangle_{2})$	$= 000\rangle + $
$= 00\rangle + 01\rangle$	$+ 10\rangle + 11\rangle$	$+ 011\rangle + 1\rangle$

 $\begin{aligned} q_1 \rangle \otimes |q_2 \rangle \otimes |q_3 \rangle &= \\ = |000\rangle + |001\rangle + |010\rangle + |100\rangle \\ + |011\rangle + |101\rangle + |110\rangle + |111\rangle \end{aligned}$

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical" – R. Feynman 1981

Benioff, J. Stat. Phys. 22 (5), 563 (1980); Feynman, Int. J. Theo. Phys. 21 (6/7), 467 (1982); Preskill, Quantum 2, 79 (2018)

Quantum Chemistry on Quantum Computers

Current quantum hardware has many problems still: noise, decoherence and **limited number of qubits** – noisy intermediate-scale quantum (NISQ) era

Quantum chemistry / electronic structure problem potential use-case / killer-application of NISQ devices and "quantum primacy" for relevant systems

Current hybrid quantum-classical approach: Use quantum processor (QPU) combined with classical resources. **Basis set scaling** a problem as **every spin-orbital needs a qubit** for representation on quantum hardware.

Minimal basis far from CBS results!

beyond

2023

1121

QPE: Kitaev, arXiv:quant-ph/9511026 (1995), Nielsen and Chuang, Quantum computation and quantum information (2001); **VQE:** Peruzzo et al., Nature Comm., 5, 4213, (2014), McClean, et al., New J. Phys. 18, 023023 (2016); * https://research.ibm.com/blog/ibm-quantum-roadmap

Correlated Ansatz to reduce the computational footprint on quantum hardware

Cusp Condition – Explicitly Correlated Ansatz

Describe the cusp exactly and capture part of correlation with a **correlated wavefunction Ansatz** (Jastrow Ansatz):

$$\left|\Psi(\{\mathbf{r}\})\right\rangle = e^{\hat{\tau}} \left|\Phi(\{\mathbf{r}\})\right\rangle,$$

with an explicit function of two electron coordinates

$$\hat{\tau}(\{\mathbf{r}\}) = \sum_{i < j} J_{ij} u(\mathbf{r}_i, \mathbf{r}_j)$$

Jastrow, Phys. Rev. 98, 1479 (1955)

Other Approaches

Transcorrelated approach of Boys and Handy: optimize Slater-Jastrow form, orbitals $\{\phi\}$ of a single Slater determinant $|\Phi_0\rangle$ and Jastrow parameters J_{ij} in $\hat{\tau}$ $|\Psi_{BH}\rangle = e^{\hat{\tau}} |\Phi_0(\{\phi\})\rangle$

Problematic because on non-Hermitian nature of \bar{H}

Variational quantum Monte Carlo: minimize variational energy, by optimizing trial-wf. parameters (accuracy limited by trial-wf.) \rightarrow our starting point

$$E_{VMC} = \min \frac{\langle \Phi_0 | e^{\hat{\tau}} \hat{H} e^{\hat{\tau}} | \Phi_0 \rangle}{\langle \Phi_0 | e^{2\hat{\tau}} | \Phi_0 \rangle}, \quad |\Phi_T \rangle = e^{\tau} | \Phi_0 \rangle$$

Explicitly correlated methods (R12/F12): use correlating functions of the interelectronic distance to describe electronic cusp

$$|\Psi_{F12}\rangle = (1 + \lambda \hat{Q}_{12} f(r_{12})) |\Phi_{HF}\rangle + \sum_{ijab} c^{ab}_{ij} |\Phi^{ab}_{ij}\rangle, \text{ with } f(r_{12}) \sim e^{-\gamma r_{12}}$$

Boys, Handy 1969; Tsuneyuki, Prog. Theor. Phys. Supp., **176**, 134 (2008); Scuseria et al., PRB, **91**, 041114 (2015) **R12:** Kutzelnigg, Theor. Chem. Acc. **68**, 335 (1985); Klopper, Kutzelnigg, Chem. Phys. Lett. **134**, 17 (1987); **F12:** S. Ten-no, Chem. Phys. Lett. **398**, 56 (2004)

Similarity Transformation – Transcorrelated Method

Instead of $\hat{H} |\Psi\rangle = E |\Psi\rangle$ solve the similarity transformed (ST) problem

$$\hat{H} |\Psi\rangle = E |\Psi\rangle$$
$$e^{-\hat{\tau}} \rightarrow | \quad \hat{H} e^{\hat{\tau}} |\Phi\rangle = E e^{\hat{\tau}} |\Phi\rangle$$
$$\left(e^{-\hat{\tau}} \hat{H} e^{\hat{\tau}}\right) |\Phi\rangle = \bar{H} |\Phi\rangle = E |\Phi\rangle$$

Baker-Campbell-Hausdorff (BCH) exp. to obtain s.t. Hamiltonian:

$$\bar{H} = e^{-\hat{\tau}} \hat{H} e^{\hat{\tau}} = \hat{H} + [\hat{H}, \hat{\tau}] + \frac{1}{2} [[\hat{H}, \hat{\tau}], \hat{\tau}] + \dots$$

terminates at 2nd order. Only kinetic energy operators in \hat{H} do not commute with $\hat{\tau}$

$$\bar{H} = \hat{H} - \sum_{i} \left(\frac{1}{2} \nabla_i^2 \hat{\tau} + (\nabla_i \hat{\tau}) \nabla_i + \frac{1}{2} (\nabla_i \hat{\tau})^2 \right)$$
$$= \hat{H} - \sum_{i < j} \hat{K}(\mathbf{r}_i, \mathbf{r}_j) - \sum_{i < j < k} \hat{L}(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k)$$

Hirschfelder, JCP, 39, 3145 (1963), Boys and Handy, Proc. R. Soc. A (1969)

- Exact transformation
- Rapid basis set convergence
- 3-body terms and non-Hermitian!

Consequences: 3-body terms

Transcorrelated Hamiltonian in 2nd quantised form

$$\bar{H} = \sum_{pq,\sigma} h_q^p a_{p,\sigma}^{\dagger} a_{q,\sigma} + \frac{1}{2} \sum_{pqrs} (V_{rs}^{pq} - K_{rs}^{pq}) \sum_{\sigma,\tau} a_{p,\sigma}^{\dagger} a_{q,\tau}^{\dagger} a_{s,\tau} a_{r,\sigma} - \frac{1}{6} \sum_{pqrstu} L_{stu}^{pqr} \sum_{\sigma\tau\lambda} a_{p,\sigma}^{\dagger} a_{q,\tau}^{\dagger} a_{r,\lambda}^{\dagger} a_{u,\lambda} a_{t,\tau} a_{s,\sigma}$$

with
$$K_{rs}^{pq} = \langle \phi_p \phi_q | \hat{K} | \phi_r \phi_s \rangle$$

 $L_{stu}^{pqr} = \langle \phi_p \phi_q \phi_r | \hat{L} | \phi_s \phi_t \phi_u \rangle$ (48-fold symmetry in *L* for real orbitals)

Both integrals K and L are computed numerically using standard DFT grids over gaussian orbitals. The main problem is the storage of L. Current limit ≈ 100 orbitals

 \Rightarrow 3-body terms need more measurements / deeper circuits on quantum hardware

Consequences: Non-Hermitian \rightarrow loss of variational principle

Variational methods like VQE not applicable. Solve for the **right** eigenvector of non-Hermitian \overline{H} by projection / imaginary-time evolution

$$i\frac{\partial\left|\Psi\right\rangle}{\partial t} = \hat{H}\left|\Psi\right\rangle \quad \stackrel{\tau=it}{\rightarrow} \quad \frac{\partial\left|\Psi\right\rangle}{\partial\tau} = -\hat{H}\left|\Psi\right\rangle \quad \rightarrow \quad \left|\Psi(\tau)\right\rangle = N(\tau)\,\mathrm{e}^{-\hat{H}\tau}\left|\Psi(0)\right\rangle$$

Conventional: FCIQMC, Quantum: **Ansatz-based QITE** * allows to formulate non-unitary time evolution as a minimization

$$\frac{\partial |\Psi(\tau)\rangle}{\partial \tau} = -(\hat{H} - E(\tau)) |\Psi(\tau)\rangle, \quad \text{with} \quad E(\tau) = \langle \Psi(\tau) | \hat{H} | \Psi(\tau) \rangle$$

Use McLachlan's variational principle

$$\delta ||\frac{\partial}{\partial \tau} + \hat{H} - E(\tau) |\Psi(\tau)\rangle || \stackrel{!}{=} 0 \text{ and an Ansatz: } |\Psi(\tau)\rangle \approx |\Phi(\vec{\theta}(\tau))\rangle$$

Booth, Thom, and Alavi, JCP, **131**, 054106 (2009); Guther, ..., WD, ..., Alavi, JCP, **153**, 034107 (**2020**) *McArdle, *et al.*, npj Quantum Information **5**, 75, 2019; Motta *et al.*, Nature Physics **16**, 205, 2020; Current work with **Igor Sokolov**

Workflow

*https://vallico.net/casinoqmc/ [†]https://gitlab.com/kguther/tchint [‡]https://github.com/ghb24/NECI_STABLE

Results: Total energies of first-row atoms

Boys-Handy form of $u(\mathbf{r}_i, \mathbf{r}_j)$ (1969)[†]:

$$u(\mathbf{r}_i, \mathbf{r}_j) = \sum_{\substack{mno\\m+n+o \le 6}} c_{mno}(\bar{r}_i^m \bar{r}_j^n + \bar{r}_j^m \bar{r}_i^n) \bar{r}_{ij}^o,$$

- \bar{r}_i^m : distance of electrons from nuclei
- \bar{r}_{ij}^{o} : relative distance between electrons
- Includes e e, e n and e e n terms
- Parameters obtained by VMC*
- \Rightarrow CBS limit results at QZ level
- \Rightarrow No need for core functions

SM7: u without e - e - n terms; SM17: full

parametrization in cc-pVnZ basis set without core functions!

Cohen, Luo, Guther, **WD**, Tew and Alavi, JCP, **151**, 061101 (2019); [†]Boys and Handy, Proc. R. Soc. A (**1969**); ^{*}Schmidt and Moskowitz, JCP, **93**, 4172 (**1990**)

Ab initio systems – other work

2 Methods

2.1 Canonical transcorrelated F12 Hamiltonian

In the CT-F12 method, two main approximations are employed in addition to the approximate BCH expansion of eqn (2): (a) the expansion is truncated to only include up to double commutators and (b) in the double commutator term, the full Hamiltonian \hat{H} is replaced by its effective 1-body constituent, the Fock operator \hat{F} ,

$$\hat{H}' \approx \hat{H} + [\hat{H}, \hat{A}]_{1,2} + \frac{1}{2} \Big[[\hat{F}, \hat{A}]_{1,2}, \hat{A} \Big]_{1,2}.$$
 (3)

Motta et al., Phys. Chem. Chem. Phys. 22, 24270, 2020

Hydrogen Fluoride

Ab initio systems – other work

Improving the Accuracy of the Variational Quantum Eigensolver for Molecular Systems by the Explicitly-Correlated Perturbative [2]_{R12} -Correction

Philipp Schleich, 1, 2, 3, * Jakob S. Kottmann, 1, 4, † and Alán Aspuru-Guzik 1, 4, 3, 5, ‡

¹Department of Computer Science, University of Toronto, Canada.

²Applied and Computational Mathematics, Department of Mathematics, RWTH Aachen University, Aachen, Germany

³Vector Institute for Artificial Intelligence, Toronto, Canada.

⁴Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Canada.

⁵Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow, Toronto, Canada

(Dated: October 14, 2021)

On the contrary, we opt to use an *a posteriori* correction based on a perturbative *explicitly correlated* method, namely the spin-free variant of $[2]_{R12}$ [18–20]. This approach is to be contrasted with other post-corrections in form of the family of quantum subspace expansion techniques [8, 9, 21]; and an application of VQE together with the transcorrelated approach, $[2]_{R12}$ or a so called "CABS singles" correction [22] has yet been suggested in [23]. Brief comments on the distinction of our approach with this one will follow.

Conventional Results

Preliminary Conventional Results – HF

Hydrogen Fluoride in a 6-31G basis set – 22 spin-orbitals \rightarrow 22 qubits

Preliminary Conventional Results – Be

Beryllium atom study. VQE - basis set free, TC: sto-6g, 6-31g and cc-pvdz basis

Schleich et al., arXiv:2110.06812, 2021

Preliminary Conventional Results – H_2O

Water molecule

Outlook

Outlook: (Virtual) orbital optimization

Water revisited – CASSCF orbitals

20

CASSCF is scaling exponentially with the active space size!

Cheaper methods, based on 2nd order perturbation theory (MP2): **Optimized virtual orbital space** (OVOS) and **frozen natural orbitals** (FNO) Correlation energy in the TC method usually smaller \rightarrow more effective

Identifying challenges towards practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver

Jérôme F. Gonthier,¹ Maxwell D. Radin,¹ Corneliu Buda,² Eric J. Doskodi,² Clena M. Abuan,⁵ and Jhonathan Romero³ ¹Zapata Computing, Inc. 100 Fedra St., Boton, M. Adulto, Ullo, USA ³Applied Chemistry and Physics Centre of Expering. RP Group Research, 150 West Varrenille Rad, Naperville, ILe 0653, USA ³Digital Science and Engineering, BP Inwoation and Engineering, 500 Wostlake Park Bird, Houston, TX 77079, USA (Dated: Sceenberry 2020) Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments

Cite as: J. Chem. Phys. **155**, 034110 (2021); https://doi.org/10.1063/5.0054647 Submitted: 20 April 2021. Accepted: 18 June 2021. Published Online: 16 July 2021

🔟 Prakash Verma, 🇐 Lee Huntington, 🗐 Marc P. Coons, 😏 Yukio Kawashima, 🗊 Takeshi Yamazaki, and 😏 Arman Zaribafiyan

OVOS: Adamowicz and Bartlett, JCP 86, 6314 (1987); FNO: Sosa et al., Chem. Phys. Lett. 159 (2-3) 148 (1989); Taube and Bartlett Collect. Czech. Chem. Commun. 70, 837 (2005); NISQ: Gonthier et al. arXiv:2012.04001; (2020); Verma et al. JCP 155, 034110 (2021)

Thank you for your attention!

Full Configuration Interaction Quantum Monte Carlo

• *Projector MC method* based on the **imaginary-time Schrödinger equation**, stochastically sampling FCI wavefunction. Integration leads to an iterable equation:

$$i\frac{\partial|\Psi(t)\rangle}{\partial t} = \hat{H}|\Psi(t)\rangle \stackrel{\tau=it}{\to} \frac{\partial|\Psi(\tau)\rangle}{\partial \tau} = -\hat{H}|\Psi(\tau)\rangle \rightarrow |\Psi_{GS}\rangle \propto \lim_{\tau \to \infty} e^{-\tau\hat{H}} |\Phi(\tau=0)\rangle$$

• First order Taylor expansion $e^{-\Delta \tau \hat{H}} \approx 1 - \Delta \tau \hat{H}$ leads to the working equation:

$$c_i(\tau + \Delta \tau) = [1 - \Delta \tau H_{ii}] c_i(\tau) - \Delta \tau \sum_{j \neq i} H_{ij} c_j(\tau)$$

for
$$c_i$$
 in $|\Psi(\tau)\rangle = \sum_i c_i |D_i\rangle$
 $\Psi(\tau)$:

- Solved stochastically by the *population dynamics* of **"walkers"** in the discrete Slater determinant (SD) Hilbert space.
- Multireference method and highly accurate solutions for system sizes > (50e, 50o) possible.

Booth, Thom, and Alavi, JCP, 131, 054106 (2009); Guther, ..., WD, ..., Alavi, JCP, 153, 034107 (2020)

Massively Parallel – Towards the Exascale

CAS(54e,54o) FeMoco molecule on 512 and 620 nodes @ Max-Planck Cobra HPC cluster

Walkers	Cores	Time/iteration	Ratio cores	Ratio time/iteration	Parallel efficiency $(\%)$
32×10^9	19960	23.5	1.242	1.246	99.68
32×10^9	24800	18.8	_	_	-

Ongoing work in the European Center of Excellence Targeting Real Chemical Accuracy at the EXascale (TREX) Interfaced with Molpro, OpenMolcas, PySCF and VASP William Jalby @

Guther, ..., WD, ..., Alavi, JCP, 153, 034107 (2020)

Possible future project on Quantum Computing: Use spin-symmetry to reduce number of qubits/parameters/circuit depth

Based on the **spin-free** formulation of the non-relativistic Hamiltonian:

$$\hat{H} = \sum_{ij}^{n} t_{ij} \,\hat{E}_{ij} + \frac{1}{2} \sum_{ijkl}^{n} V_{ijkl} \left(\hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} \right)$$

Use the (G)UGA Ansatz:

- Possible qubit reduction, due to n spatial orbitals instead of 2n spin-orbitals!*
- Better overlap of Ansatz wavefunction with true groundstate beneficial for quantum phase estimation algorithm
- Reduce necessary Ansatz qubit number, due to conserved total spin (Serber-type Ansatz by Sugisaki *et al.*[‡])
- Reduce circuit depth, since no spin-contamination †

Possible collabs: Anyone interested in highly accurate results for spin systems?

*Whitfield, JCP., 139, 021105 (2013), [†]Sugisaki et al., CPL X, 1, 100002 (2019), [†]Tsuchimochi, Mori, and Ten-no, PRR 2, 043142 (2020), Grimsley, Economou, Barnes and Mayhall, Nature Comm. 10, 3007 (2019)

Imaginary-time propagation with s.t. Hamiltonians

Why is the FCIQMC method applicable?

$$|\Psi(\beta)\rangle = e^{-\beta(\hat{H} - E_0)} |\Psi(0)\rangle \quad \to \quad |\Psi_0\rangle = \lim_{\beta \to \infty} e^{-\beta(\hat{H} - E_0)} |\Psi(0)\rangle$$

with
$$|\Psi(\beta)\rangle = e^{\hat{\tau}} |\Phi(\beta)\rangle$$

 $|\Phi(\beta)\rangle = e^{-\beta(\bar{H} - E_0)} |\Phi(0)\rangle \rightarrow |\Phi_0\rangle = \lim_{\beta \to \infty} e^{-\beta(\bar{H} - E_0)} |\Phi(0)\rangle$

Proof:

$$\begin{aligned} \mathbf{e}^{\hat{\tau}} \left| \Phi(\beta) \right\rangle &= \left| \Psi(\beta) \right\rangle = \mathbf{e}^{-\beta(\hat{H} - E_0)} \left| \Psi(0) \right\rangle = \mathbf{e}^{-\beta(\hat{H} - E_0)} \mathbf{e}^{\hat{\tau}} \left| \Phi(0) \right\rangle \\ \Rightarrow \left| \Phi(\beta) \right\rangle &= \mathbf{e}^{-\hat{\tau}} \mathbf{e}^{-\beta(\hat{H} - E_0)} \mathbf{e}^{\hat{\tau}} \left| \Phi(0) \right\rangle \\ &= \lim_{m \to \infty} \mathbf{e}^{-\hat{\tau}} \left(1 - \frac{\beta}{m} (\hat{H} - E_0) \right)^m \mathbf{e}^{\hat{\tau}} \left| \Phi(0) \right\rangle \\ &= \lim_{m \to \infty} \underbrace{\mathbf{e}^{-\hat{\tau}}}_{\rightarrow} \left(1 - \frac{\beta}{m} (\hat{H} - E_0) \right) \underbrace{\mathbf{e}^{\hat{\tau}}}_{\leftarrow} \mathbf{e}^{-\hat{\tau}} \left(1 - \frac{\beta}{m} (\hat{H} - E_0) \right) \dots \mathbf{e}^{\hat{\tau}} \left| \Phi(0) \right\rangle \end{aligned}$$

Other Work

Compact numerical solutions to the two-dimensional repulsive Hubbard model obtained via nonunitary similarity transformation

Werner Dobrautz, Hongjun Luo, and Ali Alavi Phys. Rev. B **99**, 075119 – Published 8 February 2019

Ī

Improving the accuracy of quantum computational chemistry using the transcorrelated method

Sam McArdle^{1,*} and David P. Tew²

¹Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom ²Physical and Theoretical Chemical Laboratory, University of Oxford, South Parks Road, Oxford OX1 3Q2, United Kingdom (Datei: June 22, 2020)

Suppress energetically unfavourable double occupancies via the *Gutzwiller* Ansatz:

McArdle and Tew, arXiv:2006.11181, 2020 Gutzwiller, PRL 10, **159** (1963); Tsuneyuki, Prog. Theor. Phys. Supp., **176**, 134 (2008); Scuseria et al., PRB, **91**, 041114 (2015); **WD**, Luo, and Alavi PRB **99**, 075119 (2019)

The Hubbard model

27