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Big Picture

Learning goals:

• What is computational chemistry?

• Why is it worthwhile?

• Why do we need computers for chemistry?

• Why and how could quantum computing help?
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Why is it worthwhile?

Surprisingly small molecules responsible for fascinating

physical and chemical effects
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Nitrogen fixation

Conversion of molecular nitrogen, N2, to ammonia, NH3, → important for fertilizers

Haber-Bosch process: 1-2% of global energy consumption, huge CO2 emission

Iron-sulfur clusters

Artificial nitrogen fixation for cheaper and cleaner ammonia production for fertilizers
3



Photosynthesis

Conversion of solar energy into chemical energy

Manganese-Calcium-Oxygen Clusters

Artificial photosynthesis for carbon capture and hydrogen and oxygen for fuel cells
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Scientific method

• We want a theoretical understanding of these phenomena and explain the

physical and chemical behavior of these systems

• We want to derive a mathematical description/model

• We want to test the validity of these models and compare with experiments

• We want to predict properties of new materials based on our models

Mathematical description possible! Schrödinger equation

E Too complex and impossible to solve exactly/analytically! Need computers to

approximately solve the equations! → computational chemistry.

∼30% of high-performance computing used for chemistry-related problems
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Computational chemistry
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How do we describe these phenomena?

Atoms – the building blocks of nature

• If we knew the position and motion of all

electrons and nuclei at all times we could

describe the systems behavior and properties.

• Due to the size of the particles → quantum

effects. We can not know the position and

motion/momentum exactly at the same time.

Heisenberg uncertainty relation/particle-wave

duality.

• We can use quantum mechanics and write

down an equation to describe the behavior of the

system!
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Ingredients – what do we need?

We want an equation to describe the behavior of our system. How it evolves with time.

1. Nuclei much heavier than electrons (1000 fold) →
assume nuclei fixed!

2. Motion of electrons → kinetic energy

3. Negative charged electrons attracted to positive charged

nuclei

4. Negative charged electrons repel each other! E
→ movement and position of all electrons depend on each

other! It is a correlated problem!
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Schrödinger equation

Ingredients to describe the behavior of the electrons of our system

Ĥ = TKinetic(r) + VAttraction(r,R) + VRepulsion(r, r′)

Ne e

rij

Rij

Current state of all the electrons at time t described by the so-called wavefunction:

Ψ(r1, r2, . . . rn; t)

Schrödinger equation describes the change of the system with time t:

i
Ψ(r, t)

∂t
= ĤΨ(r, t)
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The case for quantum computing
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Problem: Nature is very complex

Cytochrome c: enzyme that eliminates toxic radicals (O−2 , H2O2) produced by cells

Cytochrome c in solution Binding site Heme group Iron cluster

Exact solution scales exponential! > 20 electrons >∼ 100 GB information!

→ can not even store wavefunction in computer memory

From: arXiv:2301.04114



How is information stored and handled on a computer?

RAM

CPU

• Modern electronics are based on transistors, which

can be seen as electronic switches that are either

“off” or “on”; 0 or 1.

→ A logical state with two possible values: a bit.

• These bits of information can either store data

(RAM/harddrive) or control operations (CPU)

0011

0101

0110

1001

1010

1100

. . .

# of states
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Quantum Bits – Qubits

@ Chalmers

3 qubit device @Chalmers

Qubits can be both |0〉 and |1〉.

Qubits rely on quantum effects → very fragile, easily

influenced by environmental effects/noise. Need to isolate

and cool them close to absolute zero! Only few of them...

Kantz et al.. Applied Physics Reviews 6, 021318



Quantum Computing

Quantum bits (qubits) can be in a superposition of both |0〉 and |1〉

Bringing together two qubits:

|Ψ〉 =

qubit 1︷ ︸︸ ︷
(|0〉+ |1〉)⊗

qubit 2︷ ︸︸ ︷
(|0〉+ |1〉) = |00〉+ |01〉+ |10〉+ |11〉 4 states

Three qubits:

|Ψ〉 =

qubit 1︷ ︸︸ ︷
(|0〉+ |1〉)⊗

qubit 2︷ ︸︸ ︷
(|0〉+ |1〉)⊗

qubit 3︷ ︸︸ ︷
(|0〉+ |1〉)

= |000〉+ |001〉+ |010〉+ |100〉+ |011〉+ |101〉+ |110〉+ |111〉 8 states

n qubits can encode exponentially many (2n) states.

→ Need new quantum algorithms to use this potential advantage!
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Ab Initio Quantum Chemistry – Electronic Structure Theory

All necessary information of a quantum system contained in electronic molecular

Hamiltonian (Born-Oppenheimer approx. and atomic units)

Ĥ = −1

2

∑

i

∇2
ri

︸ ︷︷ ︸
kinetic energy of e−

+
1

2

∑

i6=j

1

|ri − rj |
︸ ︷︷ ︸
e−− e− repulsion

−
∑

I,j

ZI
|RI − rj |

︸ ︷︷ ︸
Potential

Ne e

rij

Rij

Electronic properties: Ground- and low-lying excited state properties, energy

differences, polarization, response functions, ...

Target: High / “chemical accuracy” to ensure predictability, interpretability and

comparison with experimental results

Task: Solve the Schrödinger equation derived from first principles:

Ĥ |Ψ(r1, . . . , rn)〉 = E0 |Ψ(r1, . . . , rn)〉
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Ab Initio Quantum Chemistry – Electronic Structure Theory

We have to choose a numerical basis/orbitals to perform our calculations in! In

comp. chemistry: orbitals are smooth, “atomic-like” orbitals (for each atom):

1s 2s

2px 2py

2pz
Ne e

rij

Rij

For accurate results we need dozens to hundreds of orbitals per atom!
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Problems for accurate description: Cusp condition

Cusp condition: Singularity of Coulomb potential, 1
rij

, for rij = 0

→ sharp cusp of exact wavefunction Ψ({r}) at electron coalescence (rij = 0)

Ĥ = −
∑

I,j

ZI
|RI − rj |

−1

2

∑

i

∇2
ri+

1

2

∑

i6=j

1

|ri − rj |
, Ĥ |Ψ({r})〉 = E0 |Ψ({r})〉

−1 0 1

|ri − rj|

Ψ
(r
i,

r j
)

MB

DZ

TZ

Exact

e e

rij
1s 2sMB

DZ
2px 2py

2pz

TZ
. . .

M
B

DZ TZ . . . CBS
Basis set

size

Accuracy/
Cost

Exact

Mean-field methods, Hartree-Fock,

Perturbation Theory, CISD, ...

Coupled Cluster, ...

FCIQMC, DMRG, ...

FCI

Chemical
accuracy

Kato, Communications on Pure and Applied Mathematics 10 (2), 151 (1957)



Digital Quantum Simulation/Computation

1. Map fermionic Hamiltonian onto quantum hardware/qubits

2. Use quantum algorithms to solve the problem at hand

Circuit model: Lines/wires represent qubits encoding the occupation (0-1) of the

associated spin-orbital. Similar to classical circuits (AND, OR, ...) we can act with

operations/gates on one or more qubits. For quantum computers have to be

reversible/unitary operations Û(θ) → prepare entangled target state |Ψ(θ)〉.

↑
↓
↑
↓

0
0
0
0

Û(θ)

State preparation |Ψ(θ)〉
〈Ĥ〉

Measure observable 〈Ô〉
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Chalmers next-gen chip: 25 qubits, compared to billions of transistors in current

CPUs! Only small problems currently tractable on quantum devices

https://www.ibm.com/quantum/roadmap

https://www.ibm.com/quantum/roadmap


Overview: Quantum Chemistry on Quantum Computers

Current quantum hardware has many problems still: noise, decoherence and limited

number of qubits – noisy intermediate-scale quantum (NISQ) era

Hybrid quantum-classical approach:

QPU

1.
# of
qubits ...

...
Quantum

circuit
Û(θ)

H

Ry(θ)

Y

Z

. . .

Measure

〈Ψ(θ)|Ô|Ψ(θ)〉

Classical
computer

Update parameters θ

2. Circuit depth

• Use pros of both classical and

quantum hardware

• Use short-depth quantum

circuits that fit current hardware

• Can improve on classical

estimates by non-classical states

• Store quantum state with

exponentially fewer resources

Need two qubits per orbital → only very small, inaccurate chemistry calculations possible!
19



Reducing hardware requirements with the

transcorrelated method
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Cusp Condition – Explicitly Correlated Ansatz

|ri − rj|

|Ψ({r})〉
=

|ri − rj|

eĴ({r})

×
|ri − rj|

|Φ({r})〉

Describe the cusp exactly and capture part of correlation with a correlated (Jastrow)

wavefunction Ansatz

|Ψ({r})〉 = eĴ |Φ({r})〉 , with Ĵ({r}) =
∑

i<j

Jiju(ri, rj),

where Jij are optimizable parameters and u(ri, rj) polynomials dependent on the electron

positions. Jij optimizable with, e.g. Variational Monte Carlo (VMC)

Hylleras, Z. Phys. 54, 347 (1929); Kutzelnigg, Theoretica chimica acta 68, 445 (1985); Ten-no, J. Chem. Phys. 121, 117 (2004); Jastrow,
Phys. Rev. 98, 1479 (1955);



Similarity Transformation – Transcorrelated (TC) Method

Incorporate the Ansatz into the Hamiltonian:

Instead of Ĥ |Ψ〉 = E |Ψ〉 solve the similarity transformed/transcorrelated (TC) problem

Ĥ |Ψ〉 = E |Ψ〉 , with |Ψ〉 = eĴ |Φ〉

e−Ĵ → | Ĥ eĴ |Φ〉 = E eĴ |Φ〉 ,
(
Ĵ† = Ĵ

)

(
e−Ĵ Ĥ eĴ

)
|Φ〉 = E e−Ĵ eĴ |Φ〉 = E |Φ〉

|ri − rj|

|Φ〉

Baker-Campbell-Hausdorff (BCH) exp. to obtain TC Hamiltonian:

H̄ = e−Ĵ Ĥ eĴ = Ĥ + [ Ĥ, Ĵ ] +
1

2!
[ [ Ĥ, Ĵ ] , Ĵ ] +�

��*
0

. . .

For the molecular Hamiltonian the BCH exp. terminates at 2nd order

Hirschfelder, JCP, 39, 3145 (1963); Boys and Handy, Proc. R. Soc. A (1969); WD, Luo, Alavi, PRB 99 (7), 075119 (2019); Cohen, Luo,
Guther, WD, Tew, Alavi, JCP 151 (6), 061101 (2019); WD, Cohen, Alavi, Giner, JCP 156 (23), 234108 (2022)



The Similarity Transformed TC Hamiltonian

Consequences:

• Transcorrelated H̄ is not Hermitian! → loss of variational principle

• Additional 3-body terms in H̄

→ Ansatz-based quantum imaginary time evolution† can handle both

drawbacks on quantum hardware

Benefits:

More accurate results with smaller basis sets/less qubits!

|ri − rj|

|Φ〉

†McArdle, et al., npj Quantum Information 5, 75, 2019; McArdle and Tew, arxiv:2006.11181; ∗Haupt, Hosseini, López Rı́os, WD, Cohen and
Alavi, arxiv.2302.13683, 2023



Applications: Reducing the number of qubits for

chemistry
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Beryllium atom

Beryllium atom – exact simulation of a quantum device (no noise)

Goal: complete basis set (CBS) limit → full description to compare with experiment

0 25 50 75 100 125 150 175

Number of spin-orbitals/qubits

−14.67

−14.66

−14.65

−14.64

−14.63

−14.62

E
|H

VDZ
VTZ

VQZ
CVDZ

CVTZ
CVQZ

cc-pvXz exact

cc-pCvXz exact

Transcorrelated

CBS estimate

WD, Sokolov, Liao, Lopez Rios, Rahm, Alavi, Tavernelli, arXiv:2303.02007 2023



Lithium hydride – LiH

Lithium hydride – exact, noiseless simulation of quantum device

“Standard basis sets” not optimized for the TC method → use pre-optimized orbitals, e.g.

natural orbitals from perturbation theory calculation (MP2-NOs)

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

RLi−H | Å

−8.02

−8.00

−7.98

−7.96

E
|H

CT-F12 – 631g – 20 qubits

TC – MP-NOs(6 qubits)

TC – MP-NOs(10 qubits)

CCSD CBS
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TC – HF orbs. – cc-pVxZ

TC – MP2-NOs – cc-pVDZ

no-TC – HF orbs. – cc-pVxZ

Exp. Dissociation energy

Error wrt. CBS result vs bond distance
Experimental† dissociation energy

Order of magnitude less qubits!
∗CT-F12: Motta et al., Phys. Chem. Chem. Phys. 22, 24270, 2020; †Haeffler et al., Phys. Rev. A, 1996, 53, 6, 4127 (1996); WD, Sokolov,
Liao, Lopez Rios, Rahm, Alavi, Tavernelli, arXiv:2303.02007 2023



LiH – Experiment on IBM Quantum devices

Hardware (HW) experiment: lithium hydride dissociation energy on ibm lagos

20 40 60 80

Spin-orbitals / qubits
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TC – HF orbs.

TC – MP2-NOs

no-TC – HF orbs.

Exp. Diff. Energy

HW

HW REM

Large effect of noise! Error mitigation techniques∗ to reduce effect of noise.

WD, Sokolov, Liao, Lopez Rios, Rahm, Alavi, Tavernelli, arXiv:2303.02007 2023; ∗ Lolur, Skogh, WD, Warren, Biznárová, Osman,
Tancredi, Wendin, Bylander, and Rahm, J. Chem. Theory Comput. 2023, 19, 3, 783



Conclusions and outlook
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Conclusion – Transcorrelated Approach on Quantum Hardware

• The TC method partially transfers electronic correlations from the wavefunction

into the Hamiltonian, capturing the cusp condition.

• Reduce qubit requirements and circuit depth, due to accurate results with a

small basis sets.

• Extends applicability of current and near-term quantum devices to more

relevant quantum chemistry problems.

−1 0 1

|ri − rj|

Ψ
(r
i,

r j
)

MB

DZ

TZ

Exact

e e

rij

1s 2sMB

DZ
2px 2py

2pz

TZ
. . .

|ri − rj|

|Ψ({r})〉
=

|ri − rj|

eĴ({r})

×

|ri − rj|

|Φ({r})〉

VDZ VTZ VQZ

Basis set

0

2

4

6

∆
E
|m

H

No TC

TC
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Workshop – Frontiers of near-term quantum computing

The workshop aims to bring together researchers from the fields of computer science, quantum

information and chemistry: https://tinyurl.com/frontiers-of-qc.

29th August – 1st September, 2023, Gothenburg, Sweden

Confirmed speakers:

• Ivano Tavernelli

• Sophia Economou

• Sevag Gharibian

• Richard Kueng

• Xiao Yuan

• Christian Gogolin

• Zoë Holmes

• Stefan Knecht

• Jakob Kottmann

• Panagiotis Barkoutsos

• Ashley Montanaro

• Anand Natarajan

• Pauline Ollitrault

• Benjamin Brown

• Francesco Tacchino

• Juani Bermejo-Vega

• David Muñoz Ramo

• Tony Metger
27
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Thank you for your attention!
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How to solve non-Hermitian problems on quantum hardware

Since the TC Hamiltonian is non Hermitian, VQE not applicable!

→ Use Ansatz-based Variational Quantum Imaginary Time Evolution∗

• Based on imaginary-time

Schrödinger equation

• Projector method to obtain (right)

eigenvector

• Allows to formulate non-unitary

time evolution as minimization

• Applicable to non-Hermitian

problems

QPU

1.
# of
qubits
(width)

...
Quantum

circuit
Û(θ)

H

Ry(θ)

Y

Z

. . .

Measure

1. Metric:
Aij = 〈∂θiΦ|∂θjΦ〉

2. Gradient:
Ci = 〈∂θiΦ|Ĥ|Φ〉

Classical
computer:

1. Prep. system

2. Solve for:

θ̇ = −A−1C

CPU

Update parameters θk+1 = θk + ∆τ θ̇

2. Circuit depth

∗McArdle, et al., npj Quantum Information 5, 75, 2019; Sokolov, WD, Luo, Alavi, Tavernelli, arXiv:2201.03049 (2022);



Hierarchy of methods

System size

Accuracy/
Cost

Mean-field methods, Hartree Fock

Perturbation Theory, CISD, ...

Coupled Cluster Methods

DMRG, (FCI-)QMC, . . .

exact FCI

Chemical
accuracy

→ Extend with quantum computing

Highly accurate methods only applicable to very small system sizes.

Current quantum computing calculations/experiments use small/minimal

basis sets far from experimental results, due to limited number of qubits
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Exponential scaling of Full Configuration Interaction

There is a long history and wide variety of computational approaches in chemistry

...
...

...
... Mol. #electrons #states

H2 2 4

LiH 4 36

Be2 8 4900

H2O 12 ∼ 8 · 105

C2H4 16 ∼ 16 · 106

F2 18 ∼ 2 · 109

> 20 electrons >∼ 100 GB information!

→ can not even store wavefunction in computer memory
30



Scaling of TC – Measurement Cost

H̄ =
∑

pq,σ

hpqa
†
p,σaq,σ +

1

2

∑

pqrs,στ

V̄ pqrs a
†
p,σa

†
q,τas,τar,σ −

1

6

∑

pqrstu,στλ

Lpqrstua
†
p,σa

†
q,τa

†
r,λau,λat,τas,σ

• Measurement formally scaling as N6, with N

being the number of orbitals

• Recently shown that N6-scaling terms can be

neglected to good accuracy∗

• Current work on N4-scaling approximation

• Order of magnitude less orbitals: since also no

core functions needed in basis set†

• Shorter circuit depth, due to more compact

ground state!
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N4

(N/10)5
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∗WD et al., Journal of Chemical Physics 156 (23), 234108 (2022); †Cohen, Luo, Guther, WD, Tew, Alavi, JCP 151 (6), 061101 (2019);



Variational Quantum Monte Carlo to optimize Jastrow factors

Minimize variational energy, by optimizing trial wavefunction parameters Jij :

EVMC = min
Ĵ(Jij)

〈Φ0|eĴ Ĥ eĴ |Φ0〉
〈Φ0|e2Ĵ |Φ0〉

, |ΦT 〉 = eĴ |Φ0〉

• The choice of trial wavefunction is critical in VMC calculations → accuracy

limited by |ΦT 〉 = eĴ |Φ0〉!
• Hartree-Fock state usually first starting point for |Φ0〉, but more

elaborate/accurate states possible...

• Polynomial scaling ∼ N3

• Such a VMC calculations to optimize Jij with a HF state |Φ0〉 = |ΦHF 〉 our

starting point for the transcorrelated method

32



Explicitly Correlated methods

|ri − rj|

y = rij

Linear behavior in electron-electron distance rij = |ri − rj | for small rij !

R12 methods∗: |Ψ〉 = rij |Φ〉

F12 methods†: |Ψ〉 = f(rij) |Φ〉 , f(rij) =
1− exp(−γrij)

γ

Jastrow Ansatz‡: |Ψ〉 = eĴ |Φ〉 , Ĵ =
∑

ij

Jijg(r̃ij)

exp(−x) ≈ 1− x+O(x2), r̃ij =
rij

1 + rij
, lim

rij→0
r̃ij → 0, lim

rij→∞
r̃ij → 1

∗ Kutzelnigg, Theoretica chimica acta 68, 445 (1985); † Ten-no, J. Chem. Phys. 121, 117 (2004); ‡ Jastrow, Phys. Rev. 98, 1479 (1955);



Explicitly Correlated methods

|ri − rj|

y = rij

Linear behavior in electron-electron distance rij = |ri − rj | for small rij !

R12 methods∗: |Ψ〉 = rij |Φ〉

F12 methods†: |Ψ〉 = f(rij) |Φ〉 , f(rij) =
1− exp(−γrij)

γ

Jastrow Ansatz‡: |Ψ〉 = eĴ |Φ〉 , Ĵ =
∑

ij

Jijg(r̃ij)

exp(−x) ≈ 1− x+O(x2), r̃ij =
rij

1 + rij
, lim

rij→0
r̃ij → 0, lim

rij→∞
r̃ij → 1

∗ Kutzelnigg, Theoretica chimica acta 68, 445 (1985); † Ten-no, J. Chem. Phys. 121, 117 (2004); ‡ Jastrow, Phys. Rev. 98, 1479 (1955);



Non-Hermitian Hamiltonian – Problem for VQE

Since TC Hamiltonian is non Hermitian, variational algorithms like VQE not

applicable

EVQE = min
θ
〈Ψ(θ)| Ĥ |Ψ(θ)〉

Our Approach:

Solve for the right eigenvector of non-Hermitian H̄ py projection with QITE:

|ΦR
0 〉 ∝ lim

t→∞
e−tH̄ |φR〉 , with H̄ |ΦR

0 〉 = E |ΦR
0 〉 ,

where |ΦR〉 is a full expansion in SDs |ΦR〉 =
∑

i ci |Di〉

34



Quantum Imaginary Time Evolution – QITE

→ Solve for the right eigenvector of non-Hermitian H̄ by (quantum) imaginary-time

evolution (QITE)

i
∂ |Ψ〉
∂t

= Ĥ |Ψ〉 τ=it→ ∂ |Ψ〉
∂τ

= −Ĥ |Ψ〉 → |Ψ(τ)〉 = N(τ) e−Ĥτ |Ψ(0)〉

|Ψ(0)〉 =
∑
i

ci(0) |ψi〉 → |Ψ(τ)〉 = e−τ(Ĥ−Sτ )
∑
i

ci(0) |ψi〉 =
∑
i

ci(0) e−τ(Ei−Sτ ) |ψi〉

-1

1

τ

ci
c0(τ) c1(τ) c2(τ)

τ

E
E(τ)

Motta et al., Nature Physics 16, 205, 2020; ∗McArdle, et al., npj Quantum Information 5, 75, 2019;



Workflow

1. Starting guess |Φ0〉:
HF/MP2 in a basis set (e.g. VDZ)

CASINO∗

TCHINT†

2. VMC opt. of τ̂({r}) =
∑
Jiju(ri, rj)

EVMC = minJij 〈Φ0|eτ̂ Ĥ eτ̂ |Φ0〉

3. Compute 2- and 3-body integrals
and project onto chosen basis (VDZ)

4. Perform QITE by solving
McLachlan’s equations

Aθ̇ = −C

1. Choose Ansatz Û(θ)

|Φ0〉 Û(θ)

2. Measure the metric

Aij = ∂〈Φ(τ)|
∂θi

∂|Φ(τ)〉
∂θj

3. Measure the gradient

Ci = −∂〈Φ(τ)|
∂θi

Ĥ |Φ(τ)〉

Classical Computer CPU Quantum Computer

Anew,Cnew

θnew

∗https://vallico.net/casinoqmc/ †https://gitlab.com/kguther/tchint ‡https://github.com/ghb24/NECI_STABLE

https://vallico.net/casinoqmc/
https://gitlab.com/kguther/tchint
https://github.com/ghb24/NECI_STABLE


(Virtual) orbital optimization

U
n

op
tim

ized

...

|ΦHF 〉

...

E
n

er
gy

• “Standard basis sets” not optimized for the TC method

→ include effect of virtuals through orbital optimization /

downfolding

→ e.g. natural orbitals (NO) from a “cheap” perturbation theory

(MP2) calculation
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Spatial orbitals
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VDZ-MP2-NO Occupation

FNO: Sosa et al., Chem. Phys. Lett. 159 (2-3) 148 (1989); Taube and Bartlett Collect. Czech. Chem. Commun. 70, 837 (2005); NISQ:
Gonthier et al. arXiv:2012.04001; (2020); Verma et al. JCP 155, 034110 (2021)



Hydrogen molecule

Favorite quantum chemistry test case: Hydrogen molecule – H2

CT-F12 approximated explicitly correlated method, by Motta et al.∗

Exact statevector simulation – UCCSD Ansatz

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

RH−H | Å
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FCI VDZ – 20 qubits
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∗CT-F12: Motta et al., Phys. Chem. Chem. Phys. 22, 24270, 2020



H2 cont
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LiH – Dissociation energy

Error statistics and comparison to experimental∗ dissociation energy
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∗Haeffler et al., Phys. Rev. A, 1996, 53, 6, 4127 (1996)



Spectroscopic Constants
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8 0.75 3.87 4297 22 1.67 1.80 1283

20 0.76 4.19 4353 38 1.62 2.17 1360

TC 4 0.74 4.69 4435 6 1.60 2.42 1377

Exp. 0.74 4.52 4401 1.60 2.47 1406 41



LiH – Hardware-efficient Ansatz
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LiH – Hardware-efficient Ansatz – QASM Simulations
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• Reference-state error mitigation (REM)∗ (see

Poster session I today – G00/292) or zero-noise

extrapolation
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Lolur, Skogh, WD, Warren, Biznárová, Osman, Tancredi, Wendin, Bylander, and Rahm, J. Chem. Theory Comput. 2023, 19, 3, 783
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