Chemistry Meets Quantum Computing: A New Era of Simulation and Study

SmallTalks [about Nanoscience]

Werner Dobrautz
Chemistry and Chemical Engineering, Chalmers University of Technology

Gothenburg, June 1, 2023

CHALMERS
university of technology

Outline

- Part I: Motivation - take-home messages
- Computational chemistry
- The case for quantum computing
- Part II: Motivation: Quantum chemistry

Reducing hardware requirements with the transcorrelated method
Applications: Reducing the number of qubits for chemistry
Conclusions and outlook

Big Picture

Learning goals:

- What is computational chemistry?
- Why is it worthwhile?
- Why do we need computers for chemistry?
- Why and how could quantum computing help?

Why is it worthwhile?

Surprisingly small molecules responsible for fascinating physical and chemical effects

Nitrogen fixation

Conversion of molecular nitrogen, N_{2}, to ammonia, $\mathrm{NH}_{3}, \rightarrow$ important for fertilizers Haber-Bosch process: $\mathbf{1 - 2 \%}$ of global energy consumption, huge CO_{2} emission

Iron-sulfur clusters

Artificial nitrogen fixation for cheaper and cleaner ammonia production for fertilizers

Photosynthesis

Conversion of solar energy into chemical energy

Manganese-Calcium-Oxygen Clusters

Artificial photosynthesis for carbon capture and hydrogen and oxygen for fuel cells

Scientific method

- We want a theoretical understanding of these phenomena and explain the physical and chemical behavior of these systems
- We want to derive a mathematical description/model
- We want to test the validity of these models and compare with experiments
- We want to predict properties of new materials based on our models

Mathematical description possible! Schrödinger equation
Σ Too complex and impossible to solve exactly/analytically! Need computers to approximately solve the equations! \rightarrow computational chemistry.
$\sim 30 \%$ of high-performance computing used for chemistry-related problems

Computational chemistry

How do we describe these phenomena? Atoms - the building blocks of nature

- If we knew the position and motion of all electrons and nuclei at all times we could describe the systems behavior and properties.
- Due to the size of the particles \rightarrow quantum effects. We can not know the position and motion/momentum exactly at the same time. Heisenberg uncertainty relation/particle-wave duality.
- We can use quantum mechanics and write down an equation to describe the behavior of the system!

Ingredients - what do we need?

We want an equation to describe the behavior of our system. How it evolves with time.

1. Nuclei much heavier than electrons (1000 fold) \rightarrow assume nuclei fixed!
2. Motion of electrons \rightarrow kinetic energy
3. Negative charged electrons attracted to positive charged nuclei
4. Negative charged electrons repel each other! \sum

\rightarrow movement and position of all electrons depend on each other! It is a correlated problem!

Schrödinger equation

Ingredients to describe the behavior of the electrons of our system

$$
\hat{H}=T_{\text {Kinetic }}(\mathbf{r})+V_{\text {Attraction }}(\mathbf{r}, \mathbf{R})+V_{\text {Repulsion }}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)
$$

Current state of all the electrons at time t described by the so-called wavefunction:

$$
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots \mathbf{r}_{n} ; t\right)
$$

Schrödinger equation describes the change of the system with time t :

$$
i \frac{\Psi(\mathbf{r}, t)}{\partial t}=\hat{H} \Psi(\mathbf{r}, t)
$$

The case for quantum computing

Problem: Nature is very complex

Cytochrome c: enzyme that eliminates toxic radicals $\left(\mathrm{O}_{2}^{-}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$ produced by cells

Cytochrome c in solution

Binding site

Heme group

Iron cluster

Exact solution scales exponential! >20 electrons $>\sim 100$ GB information! \rightarrow can not even store wavefunction in computer memory

How is information stored and handled on a computer?

RAM

CPU

- Modern electronics are based on transistors, which can be seen as electronic switches that are either "off" or "on"; $\mathbf{0}$ or $\mathbf{1}$.
\rightarrow A logical state with two possible values: a bit.
- These bits of information can either store data (RAM/harddrive) or control operations (CPU)

Quantum Bits - Qubits

3 qubit device @Chalmers

Qubits can be both $|0\rangle$ and $|1\rangle$.
@ Chalmers

Qubits rely on quantum effects \rightarrow very fragile, easily influenced by environmental effects/noise. Need to isolate and cool them close to absolute zero! Only few of them...

0

Classical Bit

Qubit

Quantum Computing

Quantum bits (qubits) can be in a superposition of both $|0\rangle$ and $|1\rangle$
Bringing together two qubits:

$$
|\Psi\rangle=\overbrace{(|0\rangle+|1\rangle)}^{\text {qubit } 1} \otimes \overbrace{(|0\rangle+|1\rangle)}^{\text {qubit } 2}=|00\rangle+|01\rangle+|10\rangle+|11\rangle \quad 4 \text { states }
$$

Three qubits:

$$
\begin{aligned}
|\Psi\rangle & =\overbrace{(|0\rangle+|1\rangle)}^{\text {qubit } 1} \otimes \overbrace{(|0\rangle+|1\rangle)}^{\text {qubit } 2} \otimes \overbrace{(|0\rangle+|1\rangle)}^{\text {qubit 3 }} \\
& =|000\rangle+|001\rangle+|010\rangle+|100\rangle+|011\rangle+|101\rangle+|110\rangle+|111\rangle \quad 8 \text { states }
\end{aligned}
$$

n qubits can encode exponentially many $\left(2^{n}\right)$ states.
\rightarrow Need new quantum algorithms to use this potential advantage!

Part II

Outline

- Part I: Motivation - take-home messages

Computational chemistry

The case for quantum computing

- Part II: Motivation: Quantum chemistry
- Reducing hardware requirements with the transcorrelated method
- Applications: Reducing the number of qubits for chemistry
- Conclusions and outlook

Ab Initio Quantum Chemistry - Electronic Structure Theory

All necessary information of a quantum system contained in electronic molecular Hamiltonian (Born-Oppenheimer approx. and atomic units)

$$
\hat{H}=\underbrace{-\frac{1}{2} \sum_{i} \nabla_{\mathbf{r}_{i}}^{2}}_{\text {kinetic energy of } \mathrm{e}^{-}}+\underbrace{\frac{1}{2} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}}_{\mathrm{e}^{-}-\mathrm{e}^{-} \text {repulsion }}-\underbrace{\sum_{I, j} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{j}\right|}}_{\text {Potential }}
$$

Electronic properties: Ground- and low-lying excited state properties, energy differences, polarization, response functions, ...

Target: High / "chemical accuracy" to ensure predictability, interpretability and comparison with experimental results

Task: Solve the Schrödinger equation derived from first principles:

$$
\hat{H}\left|\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)\right\rangle=E_{0}\left|\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)\right\rangle
$$

Ab Initio Quantum Chemistry - Electronic Structure Theory

We have to choose a numerical basis/orbitals to perform our calculations in! In comp. chemistry: orbitals are smooth, "atomic-like" orbitals (for each atom):

For accurate results we need dozens to hundreds of orbitals per atom!

Problems for accurate description: Cusp condition

Cusp condition: Singularity of Coulomb potential, $\frac{1}{r_{i j}}$, for $r_{i j}=0$ \rightarrow sharp cusp of exact wavefunction $\Psi(\{\mathbf{r}\})$ at electron coalescence $\left(r_{i j}=0\right)$

$$
\hat{H}=-\sum_{I, j} \frac{Z_{I}}{\left|\mathbf{R}_{I}-\mathbf{r}_{j}\right|}-\frac{1}{2} \sum_{i} \nabla_{\mathbf{r}_{i}}^{2}+\frac{1}{2} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}, \quad \hat{H}|\Psi(\{\mathbf{r}\})\rangle=E_{0}|\Psi(\{\mathbf{r}\})\rangle
$$

Digital Quantum Simulation/Computation

1. Map fermionic Hamiltonian onto quantum hardware/qubits
2. Use quantum algorithms to solve the problem at hand

Circuit model: Lines/wires represent qubits encoding the occupation (0-1) of the associated spin-orbital. Similar to classical circuits (AND, OR, ...) we can act with operations/gates on one or more qubits. For quantum computers have to be reversible/unitary operations $\hat{U}(\boldsymbol{\theta}) \rightarrow$ prepare entangled target state $|\Psi(\boldsymbol{\theta})\rangle$.

2019	2020	2021	2022	2023	2024	2025	2026+
Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applications with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime

Model
Developers

Algorithm
Developers
Developers

Kerne
Developers

System Modularity

Circuits	()	Qiskit Runtime							
				Dynamic circuits	(Threaded primitives	Error suppression and mitigation		Error correction
Falcon 27 qubits	Hummingbird 65 qubits	Eagle 127 qubits		Osprey 433 qubits		Condor 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical and quantum communication

Chalmers next-gen chip: 25 qubits, compared to billions of transistors in current CPUs! Only small problems currently tractable on quantum devices

Overview: Quantum Chemistry on Quantum Computers

Current quantum hardware has many problems still: noise, decoherence and limited number of qubits - noisy intermediate-scale quantum (NISQ) era

Hybrid quantum-classical approach:

Update parameters $\boldsymbol{\theta}$

- Use pros of both classical and quantum hardware
- Use short-depth quantum circuits that fit current hardware
- Can improve on classical estimates by non-classical states
- Store quantum state with exponentially fewer resources

Need two qubits per orbital \rightarrow only very small, inaccurate chemistry calculations possible!

Reducing hardware requirements with the transcorrelated method

Cusp Condition - Explicitly Correlated Ansatz

Describe the cusp exactly and capture part of correlation with a correlated (Jastrow) wavefunction Ansatz

$$
|\Psi(\{\mathbf{r}\})\rangle=\mathrm{e}^{\hat{J}}|\Phi(\{\mathbf{r}\})\rangle, \quad \text { with } \quad \hat{J}(\{\mathbf{r}\})=\sum_{i<j} J_{i j} u\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right),
$$

where $J_{i j}$ are optimizable parameters and $u\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)$ polynomials dependent on the electron positions. $J_{i j}$ optimizable with, e.g. Variational Monte Carlo (VMC)

Similarity Transformation - Transcorrelated (TC) Method

Incorporate the Ansatz into the Hamiltonian:
Instead of $\hat{H}|\Psi\rangle=E|\Psi\rangle$ solve the similarity transformed/transcorrelated (TC) problem

$$
\begin{aligned}
\hat{H}|\Psi\rangle & =E|\Psi\rangle, \quad \text { with } \quad|\Psi\rangle=\mathrm{e}^{\hat{J}}|\Phi\rangle \\
\left.\mathrm{e}^{-\hat{J}} \rightarrow\left|\quad \hat{H} \mathrm{e}^{\hat{J}}\right| \Phi\right\rangle & =E \mathrm{e}^{\hat{J}}|\Phi\rangle, \quad\left(\hat{J}^{\dagger}=\hat{J}\right) \\
\left(\mathrm{e}^{-\hat{J}} \hat{H} \mathrm{e}^{\hat{J}}\right)|\Phi\rangle & =E \mathrm{e}^{-\hat{J}} \mathrm{e}^{\hat{J}}|\Phi\rangle=E|\Phi\rangle
\end{aligned}
$$

Baker-Campbell-Hausdorff (BCH) exp. to obtain TC Hamiltonian:

$$
\bar{H}=\mathrm{e}^{-\hat{J}} \hat{H} \mathrm{e}^{\hat{J}}=\hat{H}+[\hat{H}, \hat{J}]+\frac{1}{2!}[[\hat{H}, \hat{J}], \hat{J}]+\not \ldots 0
$$

For the molecular Hamiltonian the BCH exp. terminates at 2nd order

The Similarity Transformed TC Hamiltonian

Consequences:

- Transcorrelated \bar{H} is not Hermitian! \rightarrow loss of variational principle
- Additional 3-body terms in \bar{H}
\rightarrow Ansatz-based quantum imaginary time evolution ${ }^{\dagger}$ can handle both drawbacks on quantum hardware

Benefits:

More accurate results with smaller basis sets/less qubits!

Applications: Reducing the number of qubits for chemistry

Beryllium atom

Beryllium atom - exact simulation of a quantum device (no noise)
Goal: complete basis set (CBS) limit \rightarrow full description to compare with experiment

Lithium hydride - LiH

Lithium hydride - exact, noiseless simulation of quantum device
"Standard basis sets" not optimized for the TC method \rightarrow use pre-optimized orbitals, e.g. natural orbitals from perturbation theory calculation (MP2-NOs)

Error wrt. CBS result vs bond distance

Experimental ${ }^{\dagger}$ dissociation energy Order of magnitude less qubits!

LiH - Experiment on IBM Quantum devices

Hardware (HW) experiment: lithium hydride dissociation energy on ibm_lagos

Large effect of noise! Error mitigation techniques* to reduce effect of noise.

Conclusions and outlook

Conclusion - Transcorrelated Approach on Quantum Hardware

- The TC method partially transfers electronic correlations from the wavefunction into the Hamiltonian, capturing the cusp condition.
- Reduce qubit requirements and circuit depth, due to accurate results with a small basis sets.
- Extends applicability of current and near-term quantum devices to more relevant quantum chemistry problems.

Workshop - Frontiers of near-term quantum computing

The workshop aims to bring together researchers from the fields of computer science, quantum information and chemistry: https://tinyurl.com/frontiers-of-qc. 29th August - 1st September, 2023, Gothenburg, Sweden

Confirmed speakers:

- Ivano Tavernelli
- Sophia Economou
- Sevag Gharibian
- Richard Kueng
- Xiao Yuan
- Christian Gogolin
- Zoë Holmes
- Stefan Knecht
- Jakob Kottmann
- Panagiotis Barkoutsos
- Ashley Montanaro
- Anand Natarajan
- Pauline Ollitrault
- Benjamin Brown
- Francesco Tacchino
- Juani Bermejo-Vega
- David Muñoz Ramo
- Tony Metger

Thank you for your attention!

How to solve non-Hermitian problems on quantum hardware

Since the TC Hamiltonian is non Hermitian, VQE not applicable!
\rightarrow Use Ansatz-based Variational Quantum Imaginary Time Evolution*

- Based on imaginary-time Schrödinger equation
- Projector method to obtain (right) eigenvector
- Allows to formulate non-unitary time evolution as minimization
- Applicable to non-Hermitian problems

Hierarchy of methods

Highly accurate methods only applicable to very small system sizes.
Current quantum computing calculations/experiments use small/minimal basis sets far from experimental results, due to limited number of qubits

Exponential scaling of Full Configuration Interaction

There is a long history and wide variety of computational approaches in chemistry

>20 electrons $>\sim 100$ GB information!
\rightarrow can not even store wavefunction in computer memory

Scaling of TC - Measurement Cost

$$
\bar{H}=\sum_{p q, \sigma} h_{q}^{p} a_{p, \sigma}^{\dagger} a_{q, \sigma}+\frac{1}{2} \sum_{p q r s, \sigma \tau} \bar{V}_{r s}^{p q} a_{p, \sigma}^{\dagger} a_{q, \tau}^{\dagger} a_{s, \tau} a_{r, \sigma}-\frac{1}{6} \sum_{p q r s t u, \sigma \tau \lambda} L_{s t u}^{p q r} a_{p, \sigma}^{\dagger} a_{q, \tau}^{\dagger} a_{r, \lambda}^{\dagger} a_{u, \lambda} a_{t, \tau} a_{s, \sigma}
$$

- Measurement formally scaling as N^{6}, with N being the number of orbitals
- Recently shown that N^{6}-scaling terms can be neglected to good accuracy*
- Current work on N^{4}-scaling approximation
- Order of magnitude less orbitals: since also no core functions needed in basis set ${ }^{\dagger}$
- Shorter circuit depth, due to more compact ground state!

Variational Quantum Monte Carlo to optimize Jastrow factors

Minimize variational energy, by optimizing trial wavefunction parameters $J_{i j}$:

$$
E_{V M C}=\min _{\hat{J}\left(J_{i j}\right)} \frac{\left\langle\Phi_{0}\right| \mathrm{e}^{\hat{J}} \hat{H} \mathrm{e}^{\hat{J}}\left|\Phi_{0}\right\rangle}{\left\langle\Phi_{0}\right| \mathrm{e}^{2 \hat{J}}\left|\Phi_{0}\right\rangle}, \quad\left|\Phi_{T}\right\rangle=\mathrm{e}^{\hat{J}}\left|\Phi_{0}\right\rangle
$$

- The choice of trial wavefunction is critical in VMC calculations \rightarrow accuracy limited by $\left|\Phi_{T}\right\rangle=\mathrm{e}^{\hat{J}}\left|\Phi_{0}\right\rangle$!
- Hartree-Fock state usually first starting point for $\left|\Phi_{0}\right\rangle$, but more elaborate/accurate states possible...
- Polynomial scaling $\sim N^{3}$
- Such a VMC calculations to optimize $J_{i j}$ with a HF state $\left|\Phi_{0}\right\rangle=\left|\Phi_{H F}\right\rangle$ our starting point for the transcorrelated method

Explicitly Correlated methods

Linear behavior in electron-electron distance $r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$ for small $r_{i j}$!

$$
\begin{array}{rlrl}
\text { R12 methods*: } & |\Psi\rangle & =r_{i j}|\Phi\rangle \\
\text { F12 } \text { methods }^{\dagger}: & & |\Psi\rangle & =f\left(r_{i j}\right)|\Phi\rangle, \quad f\left(r_{i j}\right)=\frac{1-\exp \left(-\gamma r_{i j}\right)}{\gamma} \\
\text { Jastrow Ansatz }
\end{array}
$$

Explicitly Correlated methods

Linear behavior in electron-electron distance $r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$ for small $r_{i j}$!

$$
\begin{array}{rlrl}
\text { R12 methods*: } & |\Psi\rangle & =r_{i j}|\Phi\rangle \\
\text { F12 methods }
\end{array}
$$

Non-Hermitian Hamiltonian - Problem for VQE

Since TC Hamiltonian is non Hermitian, variational algorithms like VQE not applicable

$$
E_{\mathrm{VQE}}=\min _{\boldsymbol{\theta}}\langle\Psi(\boldsymbol{\theta})| \hat{H}|\Psi(\boldsymbol{\theta})\rangle
$$

Our Approach:
Solve for the right eigenvector of non-Hermitian \bar{H} py projection with QITE:

$$
\left|\Phi_{0}^{R}\right\rangle \propto \lim _{t \rightarrow \infty} \mathrm{e}^{-t \bar{H}}\left|\phi^{R}\right\rangle, \quad \text { with } \quad \bar{H}\left|\Phi_{0}^{R}\right\rangle=E\left|\Phi_{0}^{R}\right\rangle,
$$

where $\left|\Phi^{R}\right\rangle$ is a full expansion in SDs $\left|\Phi^{R}\right\rangle=\sum_{i} c_{i}\left|D_{i}\right\rangle$

Quantum Imaginary Time Evolution - QITE

\rightarrow Solve for the right eigenvector of non-Hermitian \bar{H} by (quantum) imaginary-time evolution (QITE)

$$
\begin{gathered}
i \frac{\partial|\Psi\rangle}{\partial t}=\hat{H}|\Psi\rangle \quad \stackrel{\tau=i t}{\rightarrow} \frac{\partial|\Psi\rangle}{\partial \tau}=-\hat{H}|\Psi\rangle \quad \rightarrow \quad|\Psi(\tau)\rangle=N(\tau) \mathrm{e}^{-\hat{H} \tau}|\Psi(0)\rangle \\
|\Psi(0)\rangle=\sum_{i} c_{i}(0)\left|\psi_{i}\right\rangle \quad \rightarrow \quad|\Psi(\tau)\rangle=\mathrm{e}^{-\tau\left(\hat{H}-S_{\tau}\right)} \sum_{i} c_{i}(0)\left|\psi_{i}\right\rangle=\sum_{i} c_{i}(0) \mathrm{e}^{-\tau\left(E_{i}-S_{\tau}\right)}\left|\psi_{i}\right\rangle
\end{gathered}
$$

Workflow

(Virtual) orbital optimization

Hydrogen molecule

Favorite quantum chemistry test case: Hydrogen molecule $-\mathrm{H}_{2}$
CT-F12 approximated explicitly correlated method, by Motta et al.*

Exact statevector simulation - UCCSD Ansatz

Energy vs. bond distance
Error wrt. CBS result vs. bond distance

H_{2} cont

Error statistics
Imaginary time evolution - STO-6G - $0.7 \AA$
CT-F12: Motta et al., Phys. Chem. Chem. Phys. 22, 24270, 2020 VQE/MRA+[2]R12: Schleich et al., arXiv:2110.06812, 2021

LiH - Dissociation energy

Error statistics and comparison to experimental* dissociation energy

Spectroscopic Constants

	H_{2}							
	qubits	$R_{e}(\AA)$	$D_{0}(\mathrm{eV})$	$\omega_{e}\left(\mathrm{~cm}^{-1}\right)$	qubits	$R_{e}(\AA)$	$D_{0}(\mathrm{eV})$	$\omega_{e}\left(\mathrm{~cm}^{-1}\right)$
no-TC	4	0.73	3.67	4954	12	1.54	2.66	1690
	8	0.75	3.87	4297	22	1.67	1.80	1283
	20	0.76	4.19	4353	38	1.62	2.17	1360
TC	$\mathbf{4}$	$\mathbf{0 . 7 4}$	$\mathbf{4 . 6 9}$	$\mathbf{4 4 3 5}$	$\mathbf{6}$	$\mathbf{1 . 6 0}$	$\mathbf{2 . 4 2}$	$\mathbf{1 3 7 7}$
Exp.		$\mathbf{0 . 7 4}$	$\mathbf{4 . 5 2}$	$\mathbf{4 4 0 1}$		$\mathbf{1 . 6 0}$	$\mathbf{2 . 4 7}$	$\mathbf{1 4 0 6}$

LiH - Hardware-efficient Ansatz

- LiH at equilibrium bond distance with 3 MP2 NOs.
- Hardware efficient RY Ansatz with linear entangling layer and parity encoding.
- Statevector simulation

LiH - Hardware-efficient Ansatz - QASM Simulations

- Reference-state error mitigation (REM)* (see Poster session I today - G00/292) or zero-noise extrapolation

