

Useful similarity transformations for the two-dimensional repulsive Hubbard model

Werner Dobrautz^{1*}, Hongjun Luo¹, Niklas Liebermann¹ and Ali Alavi^{1,2}

¹ Max Planck Institute for Solid State Research, Stuttgart, Germany ² Department of Chemistry, University of Cambridge, Cambridge, UK

Introduction and Goals

Similarity transformation of the Hubbard Hamiltonian using a **Gutzwiller correlator** leads to a *non-Hermitian* effective Hamiltonian^{1,2}, which can be expressed exactly in momentum-space representation and contains *three-body* interactions. While using the **kinetic** term as the **correlator** leads to *two-body* interactions in the real-space representation. We apply this methodology to study the two-dimensional Hubbard model with repulsive interactions near half-filling in the intermediate interaction strength regime (U/t = 4). We show that at optimal or near optimal strength of the Gutzwiller correlator, the similarity transformed Hamiltonian has extremely **compact right eigenvectors**, which can be sampled to *high accuracy* using the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method³. *Near-optimal correlators* can be obtained using a simple *projective* equation², thus obviating the need for a numerical optimisation of the correlator. Results are provided in lattice sizes upto 50 sites and compared to auxillary-field QMC^{4,5}.

The Similarity Transformed Hubbard Model

Hubbard model:Important basic model in solid state physics Describes a tight-binding model including local Coulomb interaction

Gutzwiller ST-FCIQMC results in momentum-space

0.9

18-site half-filled Hubbard model up to $U/t=4{\rm :}$

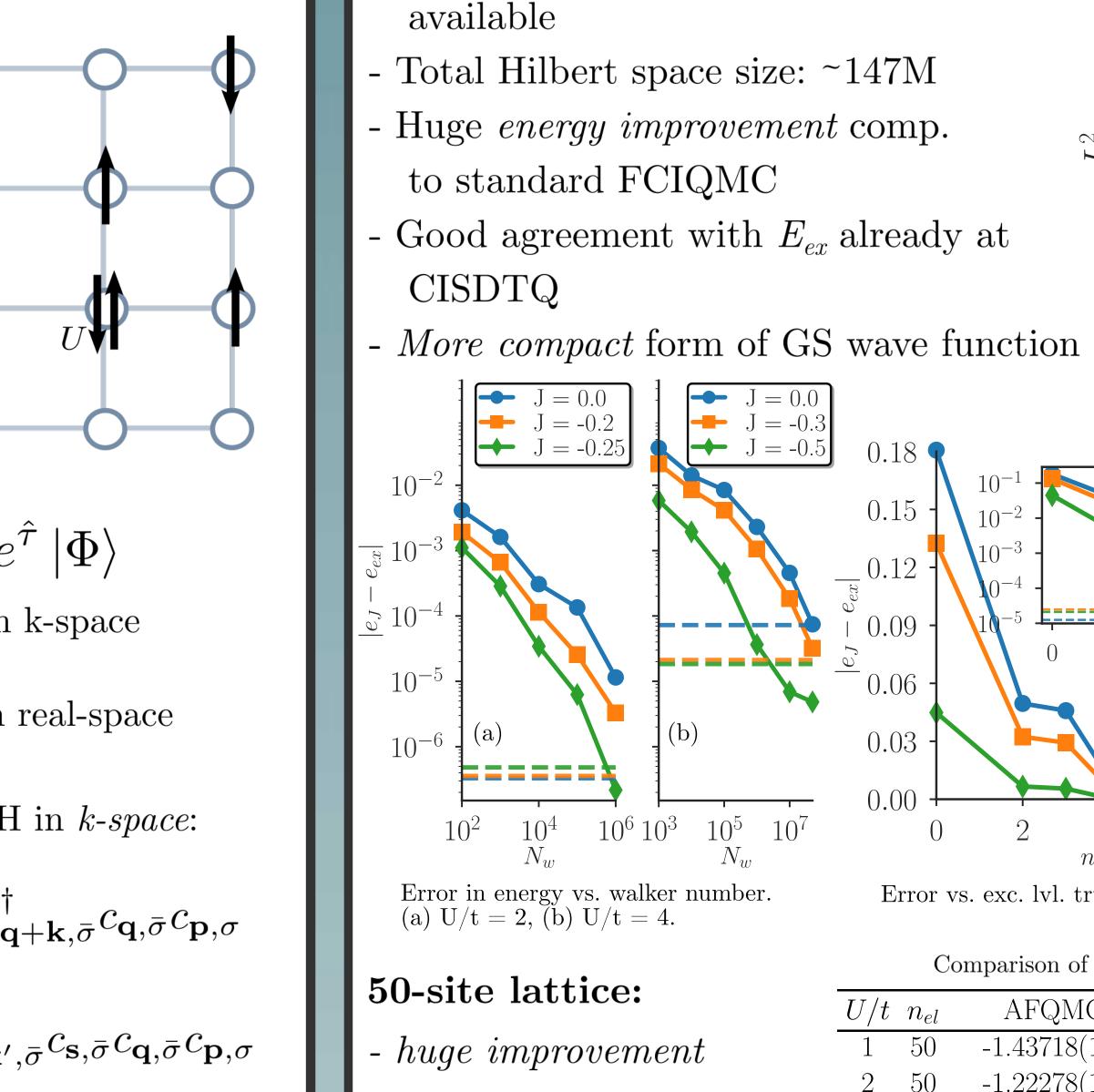
- Benchmark system with exact result

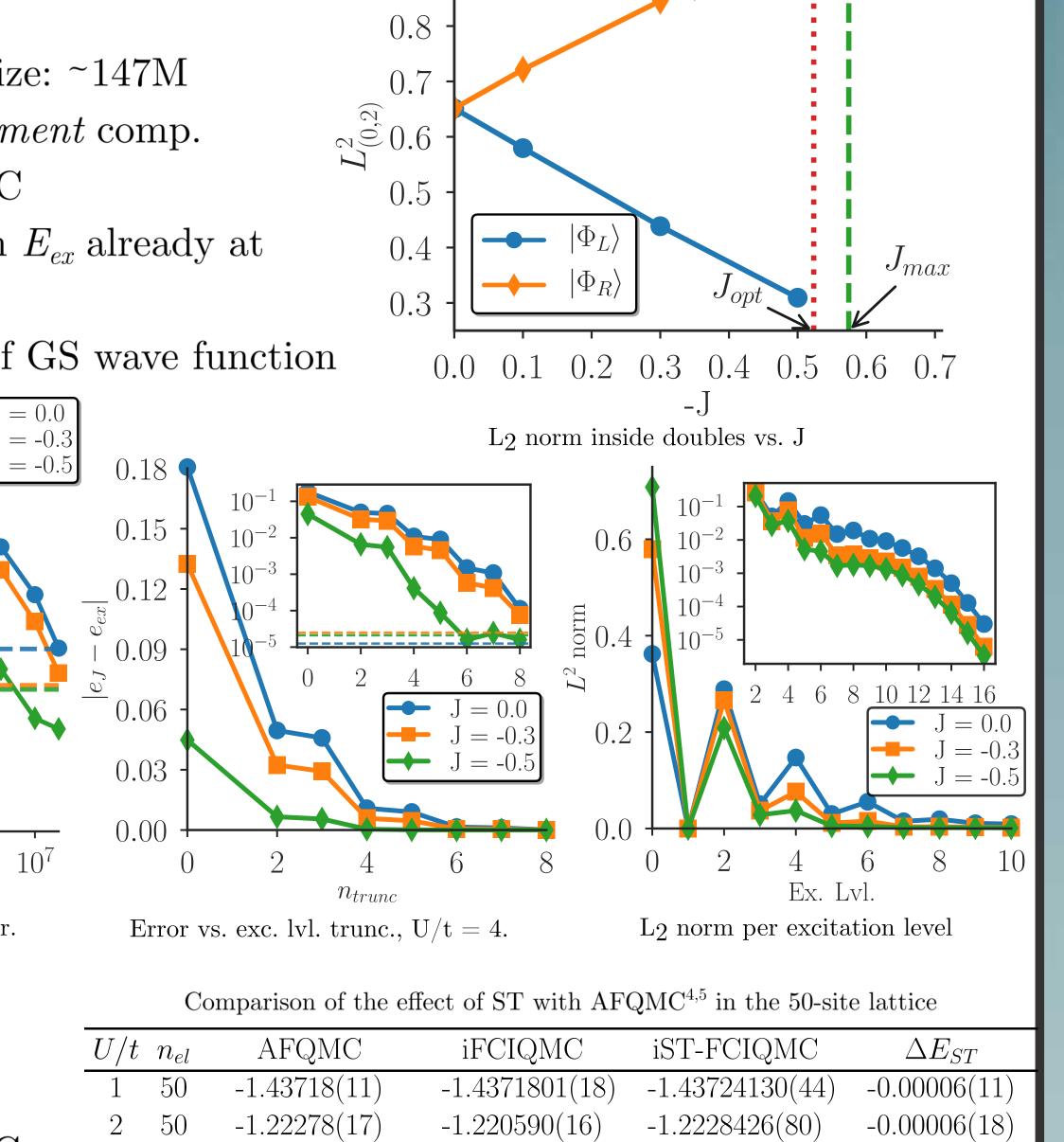
$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

- Analytic solution exists only in one and infinite dimension

- Captures Mott insulating behaviour, antiferromagnetism and superconductivity - Application in high- T_C superconductivity

Similarity Transformation (ST): - Jastrow-like Ansatz for the GS the wave function: $|\Psi\rangle = e^{\hat{\tau}} |\Phi\rangle$ - Gutzwiller on-site correlator $\hat{\tau} = J \sum_{i} n_{i\uparrow} n_{i\downarrow}$ for small U in k-space - Neighbor-hopping correlator $\hat{\tau} = J' \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i\sigma} c_{j\sigma}$ for large U in real-space - Solve $\bar{H} |\Phi\rangle = E |\Phi\rangle$ with the Gutzwiller ST non-Hermitian H in k-space: $e^{-\tau} \hat{H} e^{\tau} = -t \sum_{k\sigma} \epsilon(k) n_{k,\sigma} + \frac{1}{M} \sum_{pqk\sigma} \omega_2(J, \mathbf{p}, \mathbf{k}) c^{\dagger}_{\mathbf{p}-\mathbf{k},\sigma} c^{\dagger}_{\mathbf{q}+\mathbf{k},\bar{\sigma}} c_{\mathbf{q},\bar{\sigma}} c_{\mathbf{p},\sigma}$ $+ \frac{t(\cosh J - 1)}{M^2} \sum_{pqskk'\sigma} \epsilon(\mathbf{p} - \mathbf{k} + \mathbf{k}') c^{\dagger}_{\mathbf{p}-\mathbf{k},\sigma} c^{\dagger}_{\mathbf{q}+\mathbf{k}',\bar{\sigma}} c^{\dagger}_{\mathbf{s}+\mathbf{k}-\mathbf{k}',\bar{\sigma}} c_{\mathbf{s},\bar{\sigma}} c_{\mathbf{q},\sigma} c_{\mathbf{p},\sigma}$





*w.dobrautz@fkf.mpg.de

PYSKK U

and the hopping ST $\bar{H} = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + U \sum_{\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}} F(J', \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}) c^{\dagger}_{\mathbf{i}\uparrow} c^{\dagger}_{\mathbf{j}\downarrow} c_{\mathbf{k}\downarrow} c_{\mathbf{l}\uparrow}$ in real-space:

Analytic results for the Hubbard Model

Optimize J by a projection of the eigenvalue equation $(\bar{H} - E) |\Phi_0\rangle = 0$ of a single reference determinant on the basis of the correlation factor:

 $\langle (\hat{\tau} - \langle \hat{\tau} \rangle)^{\dagger} \bar{H} \rangle = \langle \hat{\tau}^{\dagger} \bar{H} \rangle_c = 0$

- For an *infinite* system at *half-filling* and *small* U/t and *neglecting* the 3-body term, we obtain an optimal J: $J = \sinh^{-1} \left(\frac{5U\pi^6}{288t(16 + \pi^4)} \right)$ - The energy per site can be estimated as: $E_J = -\frac{16t}{\pi^2} + \frac{U}{4} - \frac{4tJ^2}{\pi^6} (\pi^4 + 16)$

Energy per site obtained via projection on the HF det. of the Gutzwiller ST Hamiltonian on a 256-site lattice and in the TDL compared with AFQMC results⁵ $\frac{U/t}{V} = 0$

	U/t = 2		U/t = 4		U/t = 6		U/t = 8	
	PBC	APBC	PBC	APBC	PBC	APBC	PBC	APBC
E_{ref}	-1.174203(23)	-1.177977(20)	-0.86051(16)	-0.86055(16)	-0.65699(12)	-0.65707(20)	-0.52434(12)	-0.52441(12)
$E_{ref} \ E_J$	-1.151280	-1.166370	-0.76354	-0.77769	-0.42855	-0.44160	-0.12848	-0.14051
J_{opt}	-0.29233	-0.28957	-0.56284	-0.55787	-0.80107	-0.79460	-1.00701	-0.99956
$E_J/E_{ref}\%$	98.0	99.0	88.7	90.4	65.3	67.2	24.5	26.8
E_{ref}^{TDL} E_{I}^{TDL}	-1.1760(2)		-0.8603(2)		-0.6567(3)		-0.5243(2)	
	-1.1609		-0.7686		-0.4203		-0.0943	
J_{opt}^{TDL}	-0.29025		-0.55911		-0.79621		-1.00142	
$E_J^{TDL}/E_{ref}\%$	98.7		89.4		64.0		18.0	

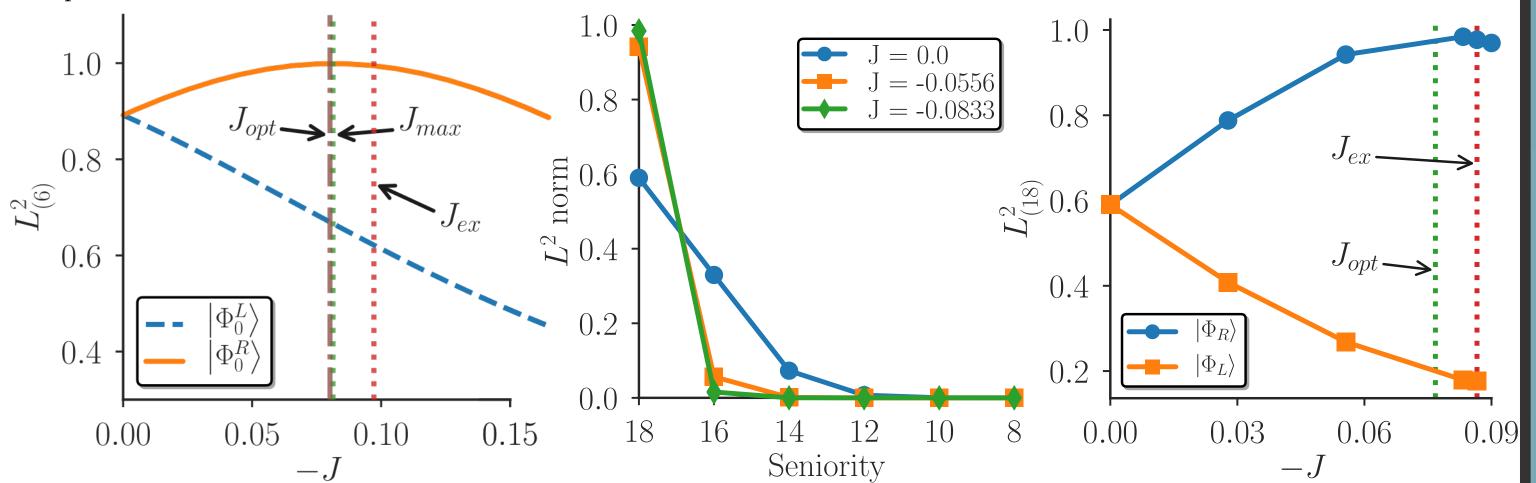
to standard FCIQMC	3	50	-1.03460(30)	-1.023064(35)	-1.034788(18)	-0.00019(32)
- good agreement with	4	50	-0.879660(20)	-0.83401(15)	-0.880657(60)	-0.000997(80)
- good agreentente with	4	48	-0.93720(15)	-0.89610(12)	-0.93642(40)	0.00078(55)
AFQMC reference results	4	46	-0.9911420(86)	-0.95550(15)	-0.990564(89)	0.00058(18)
	4	44	-1.037883(59)	-1.006483(38)	-1.037458(47)	0.00043(11)
- even off half-filling	4	42	-1.079276(66)	-1.053756(64)	-1.078908(69)	0.00037(14)

Hopping ST-FCIQMC results in real-space

- Anti-ferromagnetic **Neel-state** reference in the large U/t regime
- Long-range one- and two-body interactions, due to ST:

 $F(J', \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{l}) = \sum_{\mathbf{m}} G(J', \mathbf{i} - \mathbf{m}) G(J', \mathbf{j} - \mathbf{m}) G(-J', \mathbf{m} - \mathbf{k}) G(-J', \mathbf{m} - \mathbf{l}), \quad G(J', \mathbf{r}) = \frac{1}{M} \sum_{\mathbf{p}} e^{i\mathbf{p} \cdot \mathbf{r}} e^{-J' \epsilon(\mathbf{p})}$ - Right eigenvector concentrated in the **fully open-shell** sector of Hilbert space

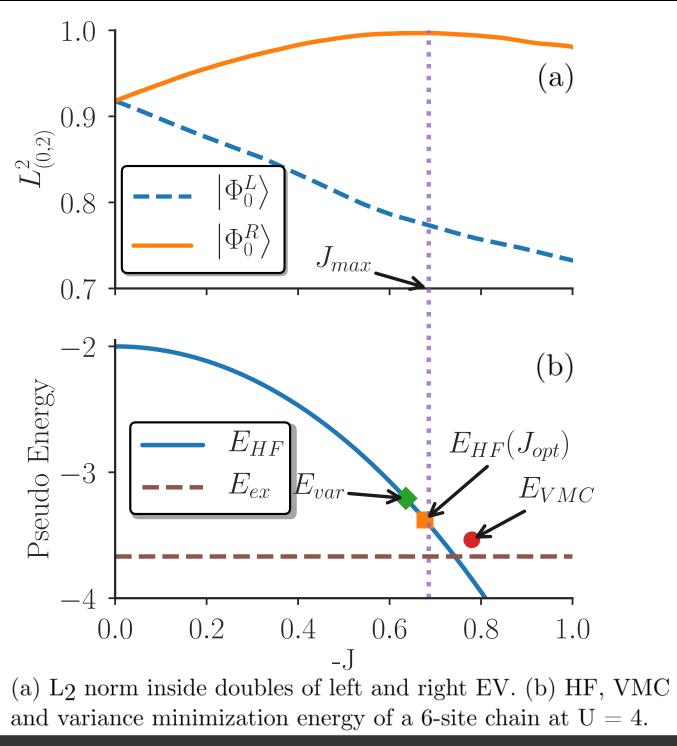
- Right eigenvector concentrated in the **fully open-shell** sector of Hilbert space corresponding to *low energy Heisenberg*-like sector
- J_{opt} obtained by projection on Neel-state *close to maximum* of norm



- ST results based on a single det. recover >85% of correlation energy for U/t up to 4.

More compact wavefunction:

- Left and right eigenvector of non-hermitian Hamiltonian differ.
 Right eigenvector sparser than original, while left eigenvector more diperse.
 Optimal J determined by projection
- close to maximum in L_2 norm.



 L_2 norm of the all-open-shell states of the exact solution of the half-filled 6-site chain at U/t=12.

 ${
m L}_2 {
m norm} {
m vs.} {
m seniority} {
m for the} {
m 18-site system} {
m at} {
m U}/t = 12.$

 ${
m L}_2$ norm in all-open-shell states for the 18-site system at U/t=12.

Summary & Outlook

- Gutzwiller correlator in momentum-space representation:
- Huge **energy improvement** and **more compact** form of the GS wavefunction with *managable additional* cost due to 3-body term
- Application to *larger* lattice sizes and *stronger* on-site repulsion U in future.
- Calculation of *excited states* and *other observables* through left-eigenvector

 $\left\langle \Phi_L \right| \bar{O} \left| \Phi_R \right\rangle = \left\langle \Psi \right| e^{\hat{\tau}} e^{-\hat{\tau}} \hat{O} e^{\hat{\tau}} e^{-\hat{\tau}} \left| \Psi \right\rangle = \left\langle \hat{O} \right\rangle$

- Detailed study of the hopping correlator in real-space for large $U\!/t$

 S. Tsuneyuki, Prog. Theo. Phys. Suppl. 176, 134 (2008)
 J. M. Wahlen-Strothman, C. A. Jiménez-Hoyos, T. M. Henderson, and G. E. Scuseria, Phys. Rev. B 91, 041114 (2015)
 G.H. Booth, A.J.W. Thom and A. Alavi, J. Chem. Phys. 131, 054106 (2009)
 S. Sorella, Priv. Comm. (2018)
 J.P.F. LeBlanc et. al., Phys. Rev. X 5, 041041 (2015), S. Sorella, Phys. Rev. B 84, 241110 (2011), M. Qin, H. Shi, and S. Zhang, Phys. Rev. B 94, 085103, H. Shi and S. Zhang, Phys. Rev. B 88, 125132 (2013)