Reducing the Circuit Footprint for Noise-Resilient Quantum Chemistry via Transcorrelation and Adaptive Ansätze

- Background and Motivation
- Transcorrelation to reduce the computational footprint on quantum hardware
- Results: Hubbard model and ab initio quantum chemistry problems
 - Hubbard model Reduce circuit depth
 - Ab initio problems Reduce circuit width (qubits)
- Adaptive Circuit Ansätze
- Conclusions

Background and Motivation

Motivation: Haber-Bosch process and biological nitrogen fixation

Haber-Bosch Process

- Crucial for fertilizer production
- 2% of world's energy consumption
- 3% of global carbon emissions
- 5% of natural gas consumption

Motivation: Haber-Bosch process and biological nitrogen fixation

- Crucial for fertilizer production
- 2% of world's energy consumption
- 3% of global carbon emissions
- 5% of natural gas consumption

Biological nitrogen fixation

- Ambient pressure and temperature
- Not yet understood \rightarrow Bio-catalysts for more efficient and greener ammonia production

Problem: Strongly correlated transition metal compounds

- Transition metal clusters act as catalysts: Iron-Molybdenum cofactor (FeMoCo) and other iron-sulfur clusters
- Experimental study very difficult!

Problem: Strongly correlated transition metal compounds

- Transition metal clusters act as catalysts: Iron-Molybdenum cofactor (FeMoCo) and other iron-sulfur clusters
- Experimental study very difficult!
- \to Numerical studies of relevant quantum phenomena necessary $\to \hat{\mathbf{H}} \ket{\Psi} = \mathbf{E} \ket{\Psi}$

We have the equations at hand, but exponentially costly on classical computers!

Problem: Strongly correlated transition metal compounds

- Transition metal clusters act as catalysts: Iron-Molybdenum cofactor (FeMoCo) and other iron-sulfur clusters
- Experimental study very difficult!
- \to Numerical studies of relevant quantum phenomena necessary $\to \hat{\mathbf{H}} \ket{\Psi} = \mathbf{E} \ket{\Psi}$

Use a combined **HPC and QC** approach for a potential computational speedup

Ab Initio Quantum Chemistry – Electronic Structure Theory

To obtain insight on the **chemical** and **physical properties** of these systems we need to **solve the Schrödinger equation**

$$\hat{H} |\Psi\rangle = E |\Psi\rangle, \qquad \qquad \hat{H} |\Psi(t)\rangle = i \frac{\partial}{\partial t} |\Psi(t)\rangle$$

All necessary information contained in electronic molecular Hamiltonian

 $\label{eq:coulomb} \begin{array}{l} \mbox{Coulomb repulsion correlates all electrons of a system} \to \mbox{analytic solution too} \\ \mbox{complex} \to \mbox{approximations and computational approaches} \end{array}$

Depending how accurately we treat correlation: various methods and **levels of theory** to solve the Schrödinger equation

Depending how accurately we treat correlation: various methods and **levels of theory** to solve the Schrödinger equation

Depending how accurately we treat correlation: various methods and **levels of theory** to solve the Schrödinger equation

Exponential scaling of Full Configuration Interaction

 $\mathsf{FCI} \Rightarrow \mathsf{exact}$ solution in a given basis: linear combination of determinants

$$|\Psi\rangle = |\Phi_{HF}\rangle + \sum_{i} c_{i} |\Phi_{i}\rangle$$

All possible excitations from HF determinant

Number of possible states for given number of electrons, N, and orbitals, $n, \sim \binom{N}{n}$

Mol.	#orbitals	#electrons	#states
H_2	2	2	4
LiH	4	4	36
Be_2	8	8	4900
H_2O	12	12	$\sim 8\cdot 10^5$
C_2H_4	16	16	$\sim 16\cdot 10^6$
F_2	18	18	$\sim 2\cdot 10^9$

Cusp condition: Singularity of Coulomb potential $(\sim \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|})$ \rightarrow sharp cusp of exact wavefunction $\Psi({\mathbf{r}})$ at electron coalescence $(|\mathbf{r}_i - \mathbf{r}_j| = 0)$

$$\hat{H} \propto -\frac{1}{2} \sum_{i} \nabla_{\mathbf{r}_{i}}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}, \qquad \hat{H} |\Psi(\{\mathbf{r}\})\rangle = E_{0} |\Psi(\{\mathbf{r}\})\rangle$$

Kato, Communications on Pure and Applied Mathematics 10 (2), 151 (1957)

Kato, Communications on Pure and Applied Mathematics 10 (2), 151 (1957)

Kato, Communications on Pure and Applied Mathematics 10 (2), 151 (1957)

Kato, Communications on Pure and Applied Mathematics 10 (2), 151 (1957)

The Case for Quantum

How can Quantum Computing help Quantum Chemistry?

 2^N states

How can Quantum Computing help Quantum Chemistry?

- Map our problem (Hamiltonian/basis functions) onto quantum hardware/qubits
 - Qubits encode occupation of spin-orbitals $\in [0,1]$
- $\rightarrow\,$ Use quantum algorithms for ground-, excited states, dynamics, \ldots

* Jordan-Wigner, Bravyi-Kitaev, (Ann. Phys. **298**, 210 (2002)), Parity encoding ...

Quantum Chemistry on Quantum Computers

 $\sim 15 {
m mK}$ Magnetic shielding

Variational Quantum Eigensolver:

Quantum Chemistry on Quantum Computers

Effect of noise:

- Bit flip: $|0\rangle \leftrightarrow |1\rangle$
- Phase flip: $|0\rangle \leftrightarrow -|0\rangle$
- Decoherence: $|0\rangle + |1\rangle \rightarrow |0\rangle + e^{i?} |1\rangle$

Quantum Chemistry on Quantum Computers

Effect of noise:

- Bit flip: $|0\rangle \leftrightarrow |1\rangle$
- Phase flip: $|0\rangle \leftrightarrow |0\rangle$
- Decoherence: $|0\rangle + |1\rangle \rightarrow |0\rangle + e^{i?} |1\rangle$

• . . .

Hybrid Quantum-Classical: Use benefits of both quantum and classical resources

<u>Algorithms:</u>
 Quantum imaginary

Quantum imaginary time evolution (QITE)

- Classical optimization
- Resource reduction: Qubits and circuit depth
- Error mitigation

Transcorrelation to reduce the computational footprint on quantum hardware

Resource Reduction: Qubits and circuit depth

Resource Reduction: Qubits and circuit depth

Form of the cusp is $\textsf{known}^* \rightarrow \textsf{describe}$ it with a wavefunction Ansatz

Resource Reduction: Qubits and circuit depth

Form of the cusp is $\textsf{known}^* \rightarrow \textsf{describe}$ it with a wavefunction Ansatz

Explicitly Correlated methods

 J_{ij} are optimizable parameters and $g(\tilde{r}_{ij})$ polynomials dependent on the electron positions. We use VMC[#] to classically optimize the Jastrow factor \hat{J} , which scales as $\mathcal{O}(n_{el}^3)$

^{*} Kutzelnigg, Theoretica chimica acta 68, 445 (1985); [†] Ten-no, J. Chem. Phys. 121, 117 (2004); [‡] Jastrow, Phys. Rev. 98, 1479 (1955); [#]Haupt, Hosseini, López Ríos WD, Cohen and Alavi, JCP 158, 224105 (2023);

Cusp Condition – The Transcorrelated (TC) Method

The transcorrelated (TC) method: use a Jastrow Ansatz, $e^{\hat{J}}$, with optimizable parameters J_{ij} (via VMC[†]) to describe the cusp condition and/or capture part of correlation.

$$|\Psi(\{\mathbf{r}\})\rangle = \exp\left[\sum_{ij} J_{ij}g(\tilde{r}_{ij})\right] |\Phi(\{\mathbf{r}\})\rangle$$

Incorporate e^{j} into Hamiltonian and solve a similarity transformed problem:

 $|\Phi
angle$ easier to represent with less basis functions ightarrow immense resource reduction

*Kato (1957); Boys and Handy (1969); Kutzelnigg (1985); WD, Luo, Alavi, PRB 99 (7), 075119 (2019); Cohen, Luo, Guther, WD, Tew, Alavi, JCP 151 (6), 061101 (2019) WD, Cohen, Alavi, Giner, JCP 156 (23), 234108 (2022); [†]Haupt, Hosseini, López Ríos, WD, Cohen and Alavi, JCP 158, 224105 (2023); Baker-Campbell-Hausdorff (BCH) exp. to obtain TC Hamiltonian:

$$\bar{H} = e^{-\hat{J}} \hat{H} e^{\hat{J}} = \hat{H} + [\hat{H}, \hat{J}] + \frac{1}{2} [[\hat{H}, \hat{J}], \hat{J}] + \dots$$

For the molecular Hamiltonian the BCH exp. terminates at 2nd order, as only kinetic energy operators in \hat{H} do not commute with $\hat{J}!$

$$\bar{H} = \hat{H} - \sum_{i} \left(\frac{1}{2} \nabla_i^2 \hat{J} + (\nabla_i \hat{J}) \nabla_i + \frac{1}{2} (\nabla_i \hat{J})^2 \right)$$
$$= \hat{H} - \sum_{i < j} \hat{K}(\mathbf{r}_i, \mathbf{r}_j) - \sum_{i < j < k} \hat{L}(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k)$$

- Exact transformation
- 3-body terms and non-Hermitian!
- Rapid basis set convergence!

Hirschfelder, JCP, 39, 3145 (1963); Boys and Handy, Proc. R. Soc. A (1969); WD, Luo, Alavi, PRB 99 (7), 075119 (2019); Cohen, Luo, Guther, WD, Tew, Alavi, JCP 151 (6), 061101 (2019); WD, Cohen, Alavi, Giner, JCP 156 (23), 234108 (2022)

Scaling of TC – Measurement Cost

$$\bar{H} = \sum_{pq,\sigma} h_q^p a_{p,\sigma}^{\dagger} a_{q,\sigma} + \frac{1}{2} \sum_{pqrs,\sigma\tau} \bar{V}_{rs}^{pq} a_{p,\sigma}^{\dagger} a_{q,\tau}^{\dagger} a_{s,\tau} a_{r,\sigma} - \frac{1}{6} \sum_{pqrstu,\sigma\tau\lambda} L_{stu}^{pqr} a_{p,\sigma}^{\dagger} a_{q,\tau}^{\dagger} a_{r,\lambda}^{\dagger} a_{u,\lambda} a_{t,\tau} a_{s,\sigma} a_{r,\sigma}^{\dagger} - \frac{1}{6} \sum_{pqrstu,\sigma\tau\lambda} L_{stu}^{pqr} a_{p,\sigma}^{\dagger} a_{q,\tau}^{\dagger} a_{r,\lambda}^{\dagger} a_{u,\lambda} a_{t,\tau} a_{s,\sigma} a_{r,\sigma}^{\dagger} - \frac{1}{6} \sum_{pqrstu,\sigma\tau\lambda} L_{stu}^{pqr} a_{p,\sigma}^{\dagger} a_{q,\tau}^{\dagger} a_{r,\lambda}^{\dagger} a_{u,\lambda} a_{t,\tau} a_{s,\sigma} a_{r,\sigma}^{\dagger} - \frac{1}{6} \sum_{pqrstu,\sigma\tau\lambda} L_{stu}^{pqr} a_{p,\sigma}^{\dagger} a_{p,\sigma}^{\dagger} a_{r,\lambda}^{\dagger} a_{u,\lambda} a_{t,\tau} a_{s,\sigma} a_{r,\sigma}^{\dagger} - \frac{1}{6} \sum_{pqrstu,\sigma\tau\lambda} L_{stu}^{pqr} a_{p,\sigma}^{\dagger} a_{p,\sigma}^{\dagger} a_{r,\lambda}^{\dagger} a_{r,\lambda} a_{r,\lambda} a_{t,\tau} a_{s,\sigma} a_{r,\sigma}^{\dagger} - \frac{1}{6} \sum_{pqrstu,\sigma\tau\lambda} L_{stu}^{pqr} a_{p,\sigma}^{\dagger} a_{p,\sigma}^{\dagger} a_{r,\lambda}^{\dagger} a_{r,\lambda} a_{t,\tau} a_{s,\sigma} a_{r,\lambda}^{\dagger} a_{r,\lambda} a_{r,\lambda} a_{t,\tau} a_{s,\sigma} a_{r,\lambda} a_{t,\tau} a_{s,\sigma} a_{r,\lambda} a_{t,\tau} a_{t,\tau} a_{s,\sigma} a_{t,\tau} a_{$$

- Measurement formally scaling as N^6 , with N being the number of orbitals
- Shown that $N^6\mbox{-scaling terms can be neglected to good accuracy*$
- **xTC** work on N^4 -scaling approximation[‡]
- Order of magnitude less orbitals: since also no core functions needed in basis set[†]
- Shorter circuit depth, due to more compact ground state![#]

* WD et al., Journal of Chemical Physics 156 (23), 234108 (2022); [†] Cohen, Luo, Guther, WD, Tew, Alavi, JCP 151 (6), 061101 (2019); [‡] Christlmaier, Schraivogel, López Ríos, Alavi, Kats, JCP 159, (1) 014113 (2023); [#] Sokolov, WD, Luo, Alavi, Tavernelli, PR Research 5 (2), 023174 (2023);

Since the TC Hamiltonian is non Hermitian, variational algorithms like VQE are not applicable! \rightarrow Quantum Imaginary Time Evolution!

(Quantum) Imaginary Time Evolution – QITE

 \rightarrow Solve for the **right** eigenvector of non-Hermitian \overline{H} by projecting on the ground state with (quantum) imaginary-time evolution (QITE)

$$i\frac{\partial |\Psi\rangle}{\partial t} = \hat{H} |\Psi\rangle \quad \stackrel{\tau=it}{\rightarrow} \quad \frac{\partial |\Psi\rangle}{\partial \tau} = -\hat{H} |\Psi\rangle \quad \rightarrow \quad |\Psi_0\rangle = \lim_{\tau \to \infty} e^{-\hat{H}\tau} |\Phi(0)\rangle$$

$$\stackrel{c_i}{\longrightarrow} \quad c_0(\tau) \cdots c_1(\tau) \cdots c_2(\tau) \quad E \quad -E(\tau)$$

Variational Ansatz-based QITE – VarQITE

(Normalized) imaginary-time (Wick-rotated) Schrödinger equation

$$\begin{aligned} \frac{\partial \left|\Psi(\tau)\right\rangle}{\partial \tau} &= -(\hat{H} - E_{\tau}) \left|\Psi(\tau)\right\rangle \quad \rightarrow \left|\Psi(\tau)\right\rangle = \mathrm{e}^{-\delta \tau (\hat{H} - E_{\tau})} \left|\Psi(0)\right\rangle \\ &\text{with} \quad E_{\tau} = \left\langle\Psi(\tau)\right| \hat{H} \left|\Psi(\tau)\right\rangle \end{aligned}$$

would yield the ground state, but **non-unitary** $e^{-\tau(\hat{H}-E_{\tau})}$ not possible on a QC! Approximate $|\Psi(\tau)\rangle$ with an "Ansatz" with parametrized unitary gates:

$$|\Psi(\tau)\rangle \approx |\Phi(\boldsymbol{\theta}(\tau))\rangle = \hat{U}(\boldsymbol{\theta}(\tau)) |\mathbf{0}\rangle$$

McArdle et al., npj Quantum, 5, 75 (2019); Yuan et al. Quantum 3, 191 (2019);

VarQITE – Details

Map imaginary-time evolution to parameters $\theta(\tau)$ of Ansatz $|\Phi(\theta(\tau))\rangle \approx |\Psi(\tau)\rangle$

- Imag-time Schrödinger equation, for small $\delta\tau$:

$$e^{-\delta \tau (\hat{H} - E_{\tau})} \approx (1 - \delta \tau (\hat{H} - E_{\tau}))$$

• Variation of $|\Phi(\boldsymbol{\theta}(\tau))\rangle$ w.r.t. to parameters $\partial \theta$:

$$|\Phi(\boldsymbol{\theta}(\tau + \delta \tau))\rangle \approx |\Phi(\boldsymbol{\theta}(\tau))\rangle + \sum_{j} \frac{\partial |\Phi(\boldsymbol{\theta}(\tau))\rangle}{\partial \theta_{j}} \frac{\partial \theta_{j}}{\partial \tau} \delta \tau$$

• McLachlan's variational principle

$$\delta \left| \left(\frac{\partial}{\partial \tau} + (\hat{H} - E_{\tau}) \right) | \Phi(\boldsymbol{\theta}(\tau)) \rangle \right| = 0$$

Evolution of parameters:
$$\dot{\boldsymbol{\theta}} = \mathbf{A}^{-1}\mathbf{C}, \quad A_{ij} = \frac{\partial \langle \Phi |}{\partial \theta_i} \frac{\partial |\Phi \rangle}{\partial \theta_j} \qquad C_i = -\frac{\partial \langle \Phi |}{\partial \theta_i} \hat{H} |\Phi \rangle$$

McLachlan, Molecular Physics, 8(1),39 (1964); McArdle et al., npj Quantum, 5, 75 (2019); Yuan et al. Quantum 3, 191 (2019);
VarQITE – Connection to Quantum Natural Gradient

• Incorporate the geometry of the Ansatz, $|\Phi({m heta})
angle=\hat{U}({m heta})|0
angle$, with metric:

$$A_{ij} = \frac{\partial \langle \Phi |}{\partial \theta_i} \frac{\partial |\Phi\rangle}{\partial \theta_j}$$

• Natural gradient update rule: $\dot{oldsymbol{ heta}} = - \mathbf{A}^{-1} oldsymbol{C}$

Can be performed in a NISQ-friendly hybrid approach

Sokolov, WD, Luo, Alavi, Tavernelli, Physical Review Research 5 (2), 023174 (2023)

Pros:

- No classical optimization
- Convergence (more) robust against noise
- Applicable to open/transport problems (non Hermitian Hamiltonians)

Cons:

- 2^{nd} order method \rightarrow metric **A** needs to be measured $-n_{\theta}^2$ scaling with n_{θ} parameters
- A can be singular \rightarrow inversion \mathbf{A}^{-1} can problematic

Improving classical optimization – qBANG – Quantum 8, 1313

Quasi-Newton approximation and an adaptive momentum (ADAM) approach to update the metric (with Sherman-Morrison formula direct update of A^{-1} !)

 $\mathbf{A}_{k+1} \approx (1 - \epsilon_k) \mathbf{A}_k + \epsilon_k \mathbf{C}_k \mathbf{C}_k^T$

Immense reduction in circuit evaluations and improved convergence

D Fitzek, R S Jonsson, WD, C Schäfer, Quantum 8, 1313

VarQITE with non-Hermitian \bar{H}

Hermitian gradient (i.e. lin. comb. of unitaries): $C_i = \frac{\partial \langle \Phi |}{\theta_i} \hat{H} |\Phi\rangle$, $\hat{H} = \sum_i c_j \hat{h}_j$

For TC: McArdle and Tew, arXiv:2006.11181

VarQITE with non-Hermitian \bar{H}

Sokolov, WD, et al, PR Res. 5 (2), 023174

In the TC case: split non-Hermitian Hamiltonian in Hermitian and anti-Hermitian part:

$$\hat{H}_{TC}^{+} = \hat{H}_{TC} + \hat{H}_{TC}^{\dagger}, \qquad \hat{H}_{TC}^{-} = \hat{H}_{TC} - \hat{H}_{TC}^{\dagger}$$
$$C_{i} = \frac{1}{2} \left(\langle \partial_{\theta_{i}} \Phi | \hat{H}_{TC} | \Phi \rangle + \langle \Phi | \hat{H}_{TC}^{\dagger} | \partial_{\theta_{i}} \Phi \rangle \right) = \frac{C_{i}^{+} + C_{i}^{-}}{4}$$
$$C_{i}^{+} = 2 \langle \partial_{\theta_{i}} \Phi | \hat{H}_{TC}^{+} | \Phi \rangle, \qquad C_{i}^{-} = 2 \langle \partial_{\theta_{i}} \Phi | \hat{H}_{TC}^{-} | \Phi \rangle$$

McArdle and Tew, arXiv:2006.11181 (2020); Sokolov, WD, Luo, Alavi, Tavernelli, Physical Review Research 5 (2), 023174 (2023) Schuld et al., Phys. Rev. A 99, 032331 (2019)

Results: Hubbard model and ab initio quantum chemistry problems

Reduce circuit depth with Transcorrelation

Suppress energetically unfavourable double occupancies via the Gutzwiller Ansatz:

- Increased compactness of the right EV, due to downfolding of correlations into Hamiltonian
- Does the increased compactness/more single reference character have an impact on the necessary quantum Ansatz depth?

Gutzwiller, PRL 10, 159 (1963); Tsuneyuki, Prog. Theor. Phys. Supp., 176, 134 (2008); Scuseria et al., PRB, 91, 041114 (2015); WD, Luo, Alavi, PRB, 99, 075119 (2019) Sokolov, WD, Luo, Alavi, Tavernelli, Physical Review Research 5 (2), 023174 (2023)

Results – Hubbard model – Phys. Rev. Research 5 (2), 023174

Transcorrelation \Rightarrow shallower quantum circuits for accurate results!

Noiseless statevector results, UCCSD Ansatz

Sokolov, WD, Luo, Alavi, Tavernelli, Physical Review Research 5 (2), 023174 (2023)

Experimental results for the Hubbard model on ibmq_lima

Sokolov, WD, Luo, Alavi, Tavernelli, Physical Review Research 5 (2), 023174 (2023)

Beryllium atom – JCTC 20 (10), 4146

Beryllium atom – exact simulation of a quantum device (no noise) **Goal:** complete basis set (CBS) limit \rightarrow full description to compare with experiment

WD, Sokolov, Liao, Lopez Rios, Rahm, Alavi, Tavernelli, JCTC 20 (10), 4146

Lithium hydride – LiH – JCTC 20 (10), 4146

Lithium hydride – Potential energy surface and dissociation energy

*CT-F12: Motta *et al.*, Phys. Chem. Chem. Phys. 22, 24270, 2020; [†]Haeffler *et al.*, Phys. Rev. A, 1996, 53, 6, 4127 (1996); WD, Sokolov, Liao, Lopez Rios, Rahm, Alavi Tavernelli, JCTC 20 (10), 4146

Reference-state Error Mitigation

Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry, *J. Chem. Theory Comput.*, **19**, 3, 783 (2023) P. Lolur, M. Skogh, W. Dobrautz, C. Warren, J. Biznárová, A. Osman, G. Wendin, J. Bylander, M. Rahm

- Classically compute exact reference energy (i.e. Hartree-Fock), $E(\theta_{\rm ref})$
- Measure reference energy on noisy device $\mathcal{E}(\theta_{\mathrm{ref}})$, with reference parameters θ_{ref}
- Calculate REM correction: $\Delta E_{\rm REM} = \mathcal{E}(\boldsymbol{\theta}_{\rm ref}) - E(\boldsymbol{\theta}_{\rm ref})$
- Correct final VQE energy with REM correction

Reference-state Error Mitigation

Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry, J. Chem. Theory Comput., **19**, 3, 783 (2023) P. Lolur, M. Skogh, **W. Dobrautz**, C. Warren, J. Biznárová, A. Osman, G. Wendin, J. Bylander, M. Rahm

*Lolur, Skogh, WD, Warren, Biznárová, Osman, Tancredi, Wendin, Bylander, and Rahm, J. Chem. Theory Comput. 2023, 19, 3, 783

Reference-state Error Mitigation

Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry, J. Chem. Theory Comput., **19**, 3, 783 (2023) P. Lolur, M. Skogh, **W. Dobrautz**, C. Warren, J. Biznárová, A. Osman, G. Wendin, J. Bylander, M. Rahm

* Lolur, Skogh, WD, Warren, Biznárová, Osman, Tancredi, Wendin, Bylander, and Rahm, J. Chem. Theory Comput. 2023, 19, 3, 783

LiH – Experiment on IBM Quantum devices – JCTC 20 (10), 4146

Hardware (HW) experiment: **lithium hydride** dissociation energy on ibm_lagos. Hardware efficient RY Ansatz with linear entangling layer and parity encoding

WD, Sokolov, Liao, Lopez Rios, Rahm, Alavi, Tavernelli, JCTC 20 (10), 4146;

Spectroscopic Constants

Adaptive Circuit Ansätze

Adaptive Circuit Ansätze

From: Grimsley et al. Nat Commun 10, 3007

Transcorrelation with Adaptive Circuit Ansätze

TC-Adaptive-VarQITE – Faraday Discuss., 254, 402

N. Gomes et al, Adv. Quantum Technol., 2021, 4, 2100114; Magnusson, Fitzpatrick, Knecht, Rahm and WD, Faraday Discuss., 254, 402 (2024)

TC-AVQITE – Results – Qubit-ADAPT UCCSD Pool

Magnusson, Fitzpatrick, Knecht, Rahm and WD, Faraday Discuss., 254, 402 (2024)

TC-AVQITE – Improved Convergence

- More compact right eigenvector \rightarrow shallower circuits
- Better convergence of TC calculations compared to non-TC results
- Additionally improved convergence compared to "full" UCCSD Ansätze.

Magnusson, Fitzpatrick, Knecht, Rahm and WD, Faraday Discuss., 254, 402 (2024)

Conclusions

Conclusion – Transcorrelated Approach on Quantum Hardware

- The **TC method** partially transfers electronic correlations from the wavefunction into the Hamiltonian, **capturing the cusp condition**.
- Reduce qubit requirements and circuit depth, due to accurate results with a small basis sets and more compact (right) eigenvectors
- With efficient error mitigation techniques → extends applicability of current and near-term quantum devices to more relevant quantum chemistry problems.

Acknowledgments

CHALMERS

Funding

SPONSORED BY THE

Federal Ministry of Education and Research

Advertisement – Hiring

I AM HIRING!

Physics, Chemistry, Computer Science, Quantum Technology, AI / Machine Learning, ...

Thank you for your attention!

Workflow

*https://vallico.net/casinoqmc/[†]https://gitlab.com/kguther/tchint [‡]https://github.com/ghb24/NECI_STABLE

(Virtual) orbital optimization

FNO: Sosa et al., Chem. Phys. Lett. 159 (2-3) 148 (1989); Taube and Bartlett Collect. Czech. Chem. Commun. 70, 837 (2005); NISQ: Gonthier et al. arXiv:2012.04001 (2020); Verma et al. JCP 155, 034110 (2021)

VarQITE

Three ingredients:

• Evolution of $|\Phi(\theta(\tau))\rangle$ according to imaginary time Schrödinger equation, $|\Psi(\tau)\rangle = e^{-\tau(\hat{H}-S_{\tau})} |\Psi(0)\rangle$ for small $\delta\tau : e^{-\delta\tau(\hat{H}-S_{\tau})} \approx (1 - \delta\tau(\hat{H}-S_{\tau}))$

$$|\Phi(\boldsymbol{\theta}(\tau+\delta\tau))\rangle \approx \left[1-\delta\tau(\hat{H}-S_{\tau})\right]|\Phi(\boldsymbol{\theta}(\tau))\rangle$$
 (1)

• Variation of $|\Phi(\theta(\tau))\rangle$ w.r.t. to parameters $\partial \theta$:

$$|\Phi(\boldsymbol{\theta}(\tau+\delta\tau))\rangle \approx |\Phi(\boldsymbol{\theta}(\tau))\rangle + \sum_{j} \frac{\partial |\Phi(\boldsymbol{\theta}(\tau))\rangle}{\partial \theta_{j}} \frac{\partial \theta_{j}}{\partial \tau} \delta\tau$$
(2)

Equate r.h.s. of Eqs. (1) and (2) \Rightarrow

McLachlan's variational principle

$$\implies \sum_{j} \frac{\partial |\Phi(\boldsymbol{\theta}(\tau))\rangle}{\partial \theta_{j}} \dot{\theta}_{j} \approx -(\hat{H} - S_{\tau}) |\Phi(\boldsymbol{\theta}(\tau))\rangle, \quad \text{with} \quad \dot{\theta}_{j} = \frac{\partial \theta_{j}}{\partial \tau}$$
(3)

3. McLachlan's variational principle to minimize the distance between l.h.s and r.h.s. of (3)

$$\delta \left| \left| \left(\frac{\partial}{\partial \tau} + \hat{H} - S_{\tau} \right) |\Phi(\boldsymbol{\theta}(\tau)) \rangle \right| \right| = 0, \quad \text{with} \quad \left| \left| |\Phi \rangle \right| \right| = \sqrt{\langle \Phi | \Phi \rangle}.$$

After some calculations we find a formula to update the parameters heta to emulate imaginary time evolution on quantum computers

McLachlan, Molecular Physics, 8(1),39 (1964)

VarQITE

Simulate the imaginary-time (Wick-rotated) Schrödinger equation

$$\frac{\partial |\Psi(\tau)\rangle}{\partial \tau} = -(\hat{H} - E_{\tau}) |\Psi(\tau)\rangle \quad \rightarrow |\Psi(\tau)\rangle = e^{-\delta \tau (\hat{H} - E_{\tau})} |\Psi(0)\rangle$$

by mapping on time evolution of parameters ${\pmb heta}(au)$

- Ansatz $|\Phi(\boldsymbol{\theta}(\tau))\rangle = \hat{U}(\boldsymbol{\theta}(\tau)) \, |0\rangle$
- McLachlan's variational principle

$$\delta \left| \left(\frac{\partial}{\partial \tau} + (\hat{H} - E_{\tau}) \right) | \Phi(\boldsymbol{\theta}(\tau)) \rangle \right| = 0$$

• Evolution of parameters $\mathbf{A} \cdot \dot{\boldsymbol{\theta}} = C$

$$A_{ij} = \frac{\partial \left\langle \Phi \right|}{\partial \theta_i} \frac{\partial \left| \Phi \right\rangle}{\partial \theta_j} \qquad C_i = -\frac{\partial \left\langle \Phi \right|}{\partial \theta_i} \hat{H} \left| \Phi \right\rangle_{\rm 46}$$

Quantum Imaginary Time Evolution

Imaginary-time evolution (ITE) applicable to efficiently solve for groundstate energy on quantum hardware

Quantum ITE: Map imaginary-time evolution of $|\Phi(\tau)\rangle$ to change of gate parameters $\theta(\tau)$

$$\dot{\boldsymbol{\theta}} = \mathbf{A}^{-1} \boldsymbol{C}, \qquad A_{ij} = \frac{\partial \langle \Phi |}{\partial \theta_i} \frac{\partial |\Phi \rangle}{\partial \theta_j} \qquad C_i = -\frac{\partial \langle \Phi |}{\partial \theta_i} \hat{H} |\Phi \rangle$$

with the metric (quantum Fisher information), **A**, and the gradient of the cost function, **C**. primo.ai; pennylane.ai; McArdle *et al.*, npj Quantum, 5, 75 (2019); Yuan *et al.* Quantum 3, 191 (2019);

Equation for change in parameters θ due to McLachlan's variational principle to enable Ansatz-based quantum imaginary time evolution:

$$\sum_{j} A_{ij} \dot{\theta}_j = C_i, \quad \Longrightarrow \dot{\theta} = \mathbf{A}^{-1} \mathbf{C}$$

with the metric:

$$A_{ij} = \frac{\partial \left\langle \Phi \right|}{\partial \theta_i} \frac{\partial \left| \Phi \right\rangle}{\partial \theta_j}$$

and energy gradient:

$$C_{i} = -\frac{\partial\left\langle \Phi\right|}{\partial\theta_{i}}\hat{H}\left|\Phi\right\rangle$$

* Motta et al., Nature Physics, 16, 205 (2020); pennylane.ai

Exponential scaling of Full Configuration Interaction

 $\mathsf{FCI} \Rightarrow \mathsf{exact}$ solution in a given basis: linear combination of determinants

All possible excitations from HF determinant

Number of possible states for given number of electrons, N, and orbitals, $n, \sim \binom{N}{n}$

Mol.	# orbitals	#electrons	#states
H_2	2	2	4
LiH	4	4	36
Be_2	8	8	4900
H_2O	12	12	$\sim 8\cdot 10^5$
C_2H_4	16	16	$\sim 16\cdot 10^6$
F_2	18	18	$\sim 2\cdot 10^9$
			49

Variational Quantum Monte Carlo to optimize Jastrow factors

Minimize variational energy, by optimizing trial wavefunction parameters J_{ij} :

$$E_{VMC} = \min_{\hat{J}(J_{ij})} \frac{\langle \Phi_0 | e^{\hat{J}} \hat{H} e^{\hat{J}} | \Phi_0 \rangle}{\langle \Phi_0 | e^{2\hat{J}} | \Phi_0 \rangle}, \quad |\Phi_T \rangle = e^{\hat{J}} | \Phi_0 \rangle$$

- The choice of trial wavefunction is critical in VMC calculations \rightarrow accuracy limited by $|\Phi_T\rangle = e^{\hat{J}} |\Phi_0\rangle!$
- Hartree-Fock state usually first starting point for $|\Phi_0\rangle$, but more elaborate/accurate states possible...
- Polynomial scaling $\sim N^3$
- Such a VMC calculations to optimize J_{ij} with a HF state $|\Phi_0\rangle = |\Phi_{HF}\rangle$ our starting point for the transcorrelated method

Jastrow s.t. Hamiltonian in 2nd quantised form

$$\bar{H} = \sum_{pq,\sigma} h_q^p a_{p,\sigma}^{\dagger} a_{q,\sigma} + \frac{1}{2} \sum_{pqrs} (V_{rs}^{pq} - K_{rs}^{pq}) \sum_{\sigma,\tau} a_{p,\sigma}^{\dagger} a_{q,\tau}^{\dagger} a_{s,\tau} a_{r,\sigma} - \frac{1}{6} \sum_{pqrstu} L_{stu}^{pqr} \sum_{\sigma\tau\lambda} a_{p,\sigma}^{\dagger} a_{q,\tau}^{\dagger} a_{r,\lambda}^{\dagger} a_{u,\lambda} a_{t,\tau} a_{s,\sigma}$$

with

$$\begin{split} K^{pq}_{rs} &= \langle \phi_p \phi_q | \hat{K} | \phi_r \phi_s \rangle \\ L^{pqr}_{stu} &= \langle \phi_p \phi_q \phi_r | \hat{L} | \phi_s \phi_t \phi_u \rangle \quad \text{(48-fold symmetry in } L \text{ for real orbitals)} \end{split}$$

Both integrals K and L are computed numerically using standard DFT grids over gaussian orbitals. The main problem is the storage of L. Current limit \approx 80 orbitals

Cohen, Luo, Guther, WD, Tew, Alavi, JCP 151 (6), 061101 (2019);

Hydrogen molecule

Favorite quantum chemistry test case: Hydrogen molecule – H₂

CT-F12 approximated explicitly correlated method, by Motta et al.*

Exact statevector simulation – UCCSD Ansatz

*CT-F12: Motta et al., Phys. Chem. Chem. Phys. 22, 24270, 2020

Imaginary Time Evolution (ITE) – Normalization

 $E_0-S_\tau=0$ would require knowledge of ground state. Alternative, and also to ensure proper normalization:

For small time-steps $\Delta \tau$ approximate exponential by first-order Taylor approximation^{*} and obtain iterative solution:

$$e^{-\Delta\tau(\hat{H}-S_{\tau})} \approx 1 - \Delta\tau(\hat{H}-S_{\tau}) + \mathcal{O}(\Delta\tau^{2}) \quad \rightarrow \quad |\Psi(\tau+\Delta\tau)\rangle = \left[1 - \Delta\tau(\hat{H}-S_{\tau})\right] |\Psi(\tau)\rangle$$
(4)
Assuming $\langle \Psi(\tau) | \Psi(\tau) \rangle = 1$:

$$\langle \Psi(\tau + \Delta \tau) | \Psi(\tau + \Delta \tau) \rangle = \langle \Psi(\tau) | \left[1 - \Delta \tau (\hat{H} - S_{\tau}) \right]^{2} | \Psi(\tau) \rangle \stackrel{!}{=} 1$$

$$= \underbrace{\langle \Psi(\tau) | \Psi(\tau) \rangle}_{=1} - 2\Delta \tau \underbrace{\left(\langle \Psi(\tau) | \hat{H} | \Psi(\tau) \rangle - S_{\tau} \right)}_{\stackrel{!}{=} 0} + \mathcal{O}(\Delta \tau^{2})$$

 $\implies S_{\tau} = \langle \Psi(\tau) | \hat{H} | \Psi(\tau) \rangle$ ensures normalization of $| \Psi(\tau) \rangle$ and allows ITE to converge to the groundstate

* for $\Delta \tau < 1/E_W$, with $E_W = E_{max} - E_0$ being the many-body spectral width, Trivedi and Ceperley, Phys. Rev. B, 41, 4552 (1990)

Variations in $\dot{\theta}_i \Longrightarrow$ and focusing on one term in $\dot{\theta}_i$:

$$\frac{\partial ||(\partial/\partial \tau + \hat{H} - S_{\tau}) |\Phi\rangle||}{\partial \dot{\theta}_{i}} = \sum_{j} \left(\frac{\partial \langle \Phi |}{\partial \theta_{i}} \frac{\partial |\Phi\rangle}{\partial \theta_{j}} + \frac{\partial \langle \Phi |}{\partial \theta_{j}} \frac{\partial |\Phi\rangle}{\partial \theta_{i}} \right) \dot{\theta}_{j} + \frac{\partial \langle \Phi |}{\partial \theta_{i}} \hat{H} |\Phi\rangle + \langle \Phi | \hat{H} \frac{\partial |\Phi\rangle}{\partial \theta_{i}} - S_{\tau} \left(\frac{\partial \langle \Phi |}{\partial \theta_{i}} |\Phi\rangle + \langle \Phi | \frac{\partial |\Phi\rangle}{\partial \theta_{i}} \right) \dot{\theta}_{j}$$

with

$$\begin{split} \langle \Phi \,|\, \Phi \rangle &= 1, \quad \to \quad \frac{\partial \langle \Phi \,|\, \Phi \rangle}{\partial \theta_i} = \frac{\partial \langle \Phi |}{\partial \theta_i} \,|\Phi \rangle + \langle \Phi |\, \frac{\partial \,|\Phi \rangle}{\partial \theta_i} = 0\\ \Longrightarrow \frac{\partial ||(\partial / \partial \tau + \hat{H} - S_\tau) \,|\Phi \rangle ||}{\partial \dot{\theta}_i} &= \sum_j A_{ij} \dot{\theta}_j - C_i \stackrel{!}{=} 0 \end{split}$$

55

Monotonic energy convergence

$$\frac{dE(\tau)}{d\tau} = \langle \Phi(\tau) | \hat{H} \frac{d | \Phi(\tau) \rangle}{d\tau} = \sum_{i} \langle \Phi(\tau) | \hat{H} \frac{\partial | \Phi(\tau) \rangle}{\partial \theta_{i}} \dot{\theta}_{i} \qquad (6)$$

$$= -\sum_{i} C_{i} \dot{\theta}_{i} = -\sum_{i} C_{i} A_{ij}^{-1} C_{j} \leq 0,$$

if \mathbf{A}^{-1} is positive. For arbitrary $\mathbf{x} = (x_1, x_2, \dots, x_N)^T$:

$$\mathbf{x}^{\dagger} \cdot \mathbf{A} \cdot \mathbf{x} = \sum_{ij} x_i^* A_{ij} x_j = \sum_{ij} x_i^* \left(\frac{\partial \langle \Phi(\tau) |}{\partial \theta_i} \frac{\partial |\Phi(\tau) \rangle}{\partial \theta_j} \right) x_j$$

with a general $|\zeta\rangle = \sum_i x_i \frac{\partial |\Phi(\tau)\rangle}{\partial \theta_i}$:

$$\sum_{ij} x_i^* \left(\frac{\partial \langle \Phi(\tau) |}{\partial \theta_i} \frac{\partial |\Phi(\tau)\rangle}{\partial \theta_j} \right) x_j = \langle \zeta | \zeta \rangle \ge 0$$

And we only consider non-zero eigenvalues in case A^{-1} is singular McArdle *et al.*, npj Quantum, 5, 75 (2019) (SI) Assuming: each unitary gate depends only on one parameter θ_i and each U_i is a rotation or controlled rotation gate.

$$\frac{\partial U_i(\theta_i)}{\partial \theta_i} = \sum_k f_{k,i} U_i(\theta_i) u_{k,i}, \quad \to \quad \frac{\partial |\Phi(\tau)\rangle}{\partial \theta_i} = \sum_k f_{k,i} V'_{k,i} |\mathbf{0}\rangle \tag{7}$$

with a unitary operator $u_{k,i}$, scalar parameter $f_{k,i}$ and:

$$V'_{k,i} = U_n(\theta_n) \dots U_i(\theta_i) u_{k,i} \dots U_1(\theta_1)$$

How do we measure the metric, \mathbf{A} , and the gradient, \mathbf{C} on quantum hardware.

$$A_{ij} = \frac{\partial \langle \Phi |}{\partial \theta_i} \frac{\partial |\Phi\rangle}{\partial \theta_j}, \qquad C_i = -\frac{\partial \langle \Phi |}{\partial \theta_i} \hat{H} |\Phi\rangle$$

 $|\Phi(\theta(au))
angle$ encoded by unitary gates acting on initial state: Ansatz $\hat{U}(\theta(au))$

$$|\Phi(\boldsymbol{\theta}(\tau))\rangle = \hat{U}_n(\theta_n(\tau))\cdots\hat{U}_i(\theta_i(\tau))\cdots\hat{U}_1(\theta_1(\tau)) |\mathbf{0}\rangle = \hat{U}(\boldsymbol{\theta}(\tau)) |\mathbf{0}\rangle$$

- Numerical differentiation/approximation: $\frac{\partial \hat{U}_i(\theta_i)}{\partial \theta_i} \approx \frac{\hat{U}_i(\theta_i + \Delta \theta_i) \hat{U}_i(\theta_i)}{\Delta \theta_i}$
- Parameter-shift rule^{*} (for single qubit gates): $R_z(\theta_i) = e^{-i\theta_i\sigma_z} \rightarrow \frac{\partial U_i(\theta_i)}{\partial \theta_i} = -i\sigma_z R_Z(\theta_i)$
- Linear combination of unitaries* (for general gates), see (7)ff for details

^{*} Schuld et al., Phys. Rev. A 99, 032331 (2019); Romero et al., Quantum Science and Technology, 4, 1 (2019); Li and Benjamin, Phys. Rev. X 7, 021050 (2017);

Derivative Example

• $U_i(\theta_i)$ is a single qubit rotation: $R_Z(\theta_i) = e^{-i\theta_i\sigma_z}$:

$$\frac{\partial U_i(\theta_i)}{\partial \theta_i} = -\frac{i}{2}\sigma_z R_Z(\theta_i)$$

 \rightarrow add an extra σ_z gate with factor -i/2

• $U_i(\theta_i)$ a controlled rotation: $|0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes R_Z(\theta_i)$:

$$\frac{\partial U_i(\theta_i)}{\partial \theta_i} = \ket{1} \langle 1 | \otimes \partial R_Z(\theta_i) / \partial \theta_i = -\frac{i}{2} \ket{1} \langle 1 | \otimes \sigma_z R_Z(\theta_i)$$

 \rightarrow realized with

$$u_{1,i} = I \otimes \sigma_z, f_{1,i} = -i/4,$$
$$u_{2,i} = \sigma_z \otimes \sigma_z, f_{2,i} = i/4$$

in $\sum_k f_{k,i} U_i(\theta_i) u_{k,i}$ from previous slide

Evaluation A and C with Quantum Circuits – cont.

$$A_{ij} = \sum_{k,l} f_{k,i}^* f_{l,j} \langle \mathbf{0} | V_{k,i}^{\prime \dagger} V_{l,j}^{\prime} | \mathbf{0} \rangle, \qquad C_i = \sum_{k,l} f_{k,l}^* \lambda_l \langle \mathbf{0} | V^{\prime \dagger} h_l \hat{V} | \mathbf{0} \rangle$$
(8)

with $\hat{H} = \sum_l \lambda_l h_l$. Both A and C are of the form $a \cdot e^{i\phi} \langle \mathbf{0} | \hat{U} | \mathbf{0} \rangle$ and can be evaluated on a quantum circuit.

McArdle et al., npj Quantum, 5, 75 (2019) (SI)