

CHALMERS

Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry

<u>Werner Dobrautz</u>^{*a*,*}, Mårten Skogh^{*a*,*b*}, Phalgun Lolur^{*a*}, Christopher Warren^{*c*}, Janka Biznárová^{*c*}, Amr Osman^{*c*}, Giovanna Tancredi^{*c*}, Goran Wendin^{*c*}, Jonas Bylander^{*c*}, Martin Rahm^{*a*}

^a Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden
^bData Science & Modelling, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
^cDepartment of Microtechnology and Nanoscience MC2, Chalmers University of Technology, Sweden

dobrautz@chalmers.se

Overview

- Quantum computers are limited by decoherence and gate errors¹
- Reference-state error mitigation (REM)² can be implemented on current and near-term, requires **minimal postprocessing** and can be applied along-side existing mitigation procedures
- The **method is Ansatz-agnostic** and is compatible with various variational quantum algorithms like the VQE³ or VarQITE⁴

- REM demonstrated **significant improvement in the computational accuracy** of ground state energies of small molecules (H₂, HeH⁺, and LiH) on superconducting quantum hardware
- Simulations of noisy circuits demonstrate the **method's scalability**

Reference-state Error Mitigation

We take advantage of classically tractable and easy-to-prepare points in the VQE parameter space, like the Hartree-Fock reference state.

- 1. Classically compute exact reference ence energy (i.e. Hartree-Fock), $E(\boldsymbol{\theta}_{\mathrm{ref}})$
- 2. Measure reference energy on noisy device $\mathcal{E}(\boldsymbol{\theta}_{ref})$, with reference parameters $\boldsymbol{\theta}_{ref}$
- 3. Calculate REM correction: $\Delta E_{\text{REM}} = \mathcal{E}(\boldsymbol{\theta}_{\text{ref}}) - E(\boldsymbol{\theta}_{\text{ref}})$

REM is noise-resilient: effective despite the steady increase in single- and twoqubit depolarizing error rates.

4. Correct final VQE energy with REM correction

Results

Significant improvement in the computational accuracy of ground state energies of small molecules (H_2 , HeH^+ , LiH and BeH_2) on superconducting quantum hardware

References

 Nielsen, M., & Chuang, I. (2010). Quantum Computation and Quantum Information, Cambridge University Press.
P. Lolur, , M. Skogh, W. Dobrautz, C. Warren, J. Biznárová, A. Osman, G. Tancredi, G. Wendin, J. Bylander, and M. Rahm*, J. Chem. Theory Comput. 2023, 19, 3, 783
Peruzzo, A., *et al.*, Nat. Commun. 5, 4213
McArdle, S., Jones, T., Endo, S. *et al.*, npj Quantum Inf. 5, 75
Kandala, A., *et al.*, Nature 549, 242