Spin-adapted FCIQMC using the Graphical Unitary Group Approach

Werner Dobrautz
3rd NECI Developers Meeting
Stuttgart, October 1st, 2019

Max Planck Institute for Solid State Research

Outline

- Motivation
- Spin Symmetry and the Graphical Unitary Group Approach
- Results
- Histogram-based time-step optimization
- Summary and Outlook

Motivation

Electronic Structure Theory

Goals:

- High accuracy ab initio calculations for strongly correlated systems
- We want: accuracy, predictability and interpretability to compare with experiment
- Beyond HF \& DFT: \Rightarrow stochastic wavefunction theory

Problems:

- small (near-degenerate) spin-gaps and spin-contamination problematic for convergence of projective techniques
- no control and insight of total spin quantum number with Slater determinants (hard to interpret)

Idea: Formulate FCIQMC in a spin-adapted basis

Spin Symmetry and the Graphical Unitary Group Approach (GUGA)

Spin Symmetry

Inherent to spin-preserving, non-relativistic Hamiltonians:

$$
\left[\hat{H}, \hat{\mathbf{S}}^{2}\right]=0
$$

often not directly imposed, due to impractical implementation.
Benefits of a spin-symmetry adapted basis:

- target specific spin-states (singlet, triplet,...)
- no spin-contamination
- reduce Hilbert space size!
- resolve (near-)degeneracies of different spin-sectors
\rightarrow Use Configuration state functions (CSFs) in FCIQMC

The Unitary Group Approach

- Spin-free formulation of non-relativistic Hamiltonian:

$$
\hat{H}=\sum_{i j}^{n} t_{i j} \hat{E}_{i j}+\frac{1}{2} \sum_{i j k l}^{n} V_{i j k l}\left(\hat{E}_{i j} \hat{E}_{k l}-\delta_{j k} \hat{E}_{i l}\right)
$$

- Spin-preserving excitation operators:

$$
\hat{E}_{i j}=\hat{c}_{i \uparrow}^{\dagger} \hat{c}_{j \uparrow}+\hat{c}_{i \downarrow}^{\dagger} \hat{c}_{j \downarrow}, \quad \text { with } \quad\left[\hat{E}_{i j}, \hat{\mathbf{S}}^{2}\right]=0
$$

- same commutation relations as generators of the Unitary Group $U(n) \rightarrow$ find invariant and irreducible basis
- Sequential orbital coupling based on group chain:

$$
U(1) \subset U(2) \subset \cdots \subset U(n-1) \subset U(n)
$$

J. Paldus, J. Chem. Phys. 61, 5321 (1974); I. M. Gel'fand and M. L. Tsetlin, Doklady Akad. Nauk SSSR, 71, 1017 (1950)

The Gel'fand-Tsetlin Basis

4 ways of coupling a orbital:

d_{i}		ΔN_{i}	ΔS_{i}
0	0	0	0
u	1	1	$1 / 2$
d	2	1	$-1 / 2$
2	3	2	0

For each spatial orbital (i) step-value d_{i} encodes:

- ΔN_{i} : change in total electron number
- ΔS_{i} : change in total spin with $S \geq 0$
- 2 bit per spatial orbital, like SD

CSF given by step-vector $|d\rangle$. E.g. $8 \underset{S}{\mathrm{e}^{-}}$in 8 orbitals with $\mathrm{S}=1$:

$$
\begin{aligned}
|d\rangle & =|1,0,1,2,3,1,0,3\rangle \\
& \equiv|u, 0, u, d, 2, u, 0,2\rangle
\end{aligned}
$$

Intermezzo: Excitation generation in FCIQMC

FCIQMC

Population dynamics of walkers governed by:

$$
c_{i}(\tau+\Delta \tau)=\underbrace{\left[1-\Delta \tau H_{i i}\right] c_{i}(\tau)}_{\text {death/cloning }}-\underbrace{\Delta \tau \sum_{j \neq i} H_{i j} c_{j}(\tau)}_{\text {spawning }}
$$

$\underline{\text { Spawning step: }\left|D_{i}\right\rangle \rightarrow\left|D_{j}\right\rangle \text { with } p_{\text {gen }}=\frac{\Delta \tau\left|H_{i j}\right|}{p(j \mid i)}, ~}$

Need efficient $H_{i j}$ matrix element calculation and excitation generation, $\left|D_{i}\right\rangle \rightarrow\left|D_{j}\right\rangle$

Matrix Elements and Excitations via the Graphical UGA

Calculate MEs and generate excitations with Graphical UGA:
$\left\langle d^{\prime}\right| \hat{H}|d\rangle=\sum_{i j}^{n} t_{i j}\left\langle d^{\prime}\right| \hat{E}_{i j}|d\rangle+\frac{1}{2} \sum_{i j k l}^{n} V_{i j k l}\left\langle d^{\prime}\right|\left(\hat{E}_{i j} \hat{E}_{k l}-\delta_{j k} \hat{E}_{i l}\right)|d\rangle$
$\hat{E}_{i j}$ moves electron from j to i with all symmetry allowed spin-recouplings, opposed to SD more than one excitation possible:

$$
\hat{E}_{i j}|d\rangle=\sum_{n} C_{n}\left|d_{n}^{\prime}\right\rangle \quad \begin{aligned}
& \hat{E}_{i j}|d\rangle \longrightarrow\left|d_{1}^{\prime}\right\rangle \\
&\left|d_{2}^{\prime}\right\rangle \\
&\left|d_{3}^{\prime}\right\rangle
\end{aligned}
$$

Matrix Elements and Excitations via the Graphical UGA

Single excitations

$$
\left\langle d^{\prime}\right| \hat{E}_{i j}|d\rangle=\prod_{k=i}^{j} W\left(d_{k}^{\prime}, d_{k}, S_{k}\right)
$$

Double excitations

$$
\left\langle d^{\prime}\right| \hat{E}_{i j} \hat{E}_{k l}-\delta_{j k} \hat{E}_{i l}|d\rangle=\sum_{x=0,1} \prod_{k} W_{x}\left(d_{k}^{\prime}, d_{k}, S_{k}\right)
$$

In FCIQMC we only need one connected state!
\Rightarrow Loop over $i \rightarrow j$: select one excitation randomly through branching tree and calculate matrix element on the fly!

I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977)

The Branching Tree

$$
\begin{array}{|l|l|}
\hline|d\rangle & \text { all possible excitations } \hat{E}_{26}|d\rangle \\
\left|d^{\prime}\right\rangle \\
\hline
\end{array}
$$

Randomly chosen excitation and on-the-fly ME calculation

Results

Nitrogen Dimer - Spin-resolved binding curve

- Optimal test case for spin-adapted approach
- 4 degenerate spin states at dissociation

- Spin-resolved binding curve in a cc-pVDZ basis

- Dissociation energy
within chemical
accuracy

Nitrogen Dimer - Spin-resolved binding curve

- Optimal test case for spin-adapted approach
- 4 degenerate spin states at dissociation
- Spin-resolved binding curve in a cc-pVDZ basis
- Dissociation energy within chemical accuracy

Nitrogen Dimer

Improved convergence of small spin-gaps with GUGA-FCIQMC

Comparison with m_{s} restricted SD based FCIQMC calculations

Results：Spin－Gap of the Cobalt Atom

－Difficulties：

${ }^{2} \mathrm{~F}: \uparrow \uparrow \downarrow$ 讨 $\uparrow \downarrow \downarrow 3 \mathrm{~d}$
ث 4 s
${ }^{4} \mathrm{~F}: \uparrow \uparrow \downarrow$ 个 $\uparrow \downarrow$ 个 $\downarrow \mathrm{d}$
$\uparrow 4$ s
－Restricting m_{s} converges to high－spin GS
－Inaccessible by previous spin－adaptation，due to odd numbers of electrons
－Open－shell low－spin excited state： multi－reference character of ${ }^{2} \mathrm{~F}$ state problematic for single－reference methods

Results: Spin-Gap of the Cobalt Atom

${ }^{2} \mathrm{~F}: \uparrow ~ \uparrow \downarrow$ 个 $\uparrow \downarrow$ 仗 $\downarrow 3 \mathrm{~d}$

$$
\uparrow 4 \mathrm{~s}
$$

${ }^{4} \mathrm{~F}: \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow$ $\stackrel{\uparrow}{\downarrow} 4 \mathrm{~s}$

- Spin-gap $\Delta E_{D-Q}(T Q)=21.17 \pm 0.59 \mathrm{kcal} / \mathrm{mol}$ $\Delta E_{\text {exp }}=20.26 \mathrm{kcal} / \mathrm{mol}$ [Sugar and Corliss, 1985]

Pushing the limits: Hydrogen chain at dissociation

Number of open-shell orbitals is the restricting factor in spin-adapted approaches. Worst case:
$\underline{\text { Hydrogen chain (in a minimal basis) at dissociation: }}$

L	S	$\Delta E \mid m E_{h}$
10	0	$-0.00084(88)$
10	1	$-0.0059(10)$
10	2	$-0.00020(95)$
20	0	$-0.03719(35)$
20	1	$-0.0055(22)$
20	2	$-0.0026(15)$
30	0	$-1.1623(43)^{*}$

$S=0,1$ and 2 groundstate energy of a L-hydrogen chain at $r=3.6 a_{0}$ in a STO-6G basis set compared to DMRG and MRCI+Q reference results.

Wavefunction is highly multiconfigurational and dominated by all-open-shell CSFs.

* better accuracy with non-initiator calculation!

Pushing the limits: large U Hubbard model in a real-space basis - the Nagaoka Ferromagnetism

Groundstate energy as function of S_{z} (left) and S (right) for increasing U / t for $15 e^{-}$on a 4×4 square lattice

SD-based calc. with m_{s} restriction

Spin-adapted calc. with S restriction SD-based calculation converges to high-spin groundstate!

Histogram-based time-step optimization

Conventional time-step "optimization"

- Adapt $\Delta \tau$ to ensure the number of spawned walkers:

$$
\Delta \tau \frac{\left|H_{i j}\right|}{p(j \mid i)} \approx 1
$$

- As a consequence the global time-step is determined by a single "worst-case" $\frac{\left|H_{i j}\right|}{p(j \mid i)}$ ratio, once and for all.
- This also implies a very rare spawn, $p(j \mid i) \ll 1$, determines the dynamics of the entire simulation.
- Especially damaging in the spin-adapted GUGA approach, with lower $p(j \mid i)$ due to the increased connectivity in a CSF basis.

Histogram-based time-step optimization

Instead of using worst-case $\frac{\left|H_{i j}\right|}{p(j \mid i)}$: histogram all occurrences and integrate to cover a chosen threshold (Default: 99.99\%)
\Rightarrow Almost all excitation are covered and time-step is not dominated by worst-case outliers!

Worst case, $\Delta \tau_{w}$, and histogrammed time-step $\Delta \tau_{h}(99.99 \%)$ for the SD- and CSF-based N_{2} calc. at equilibrium.

Basis	$\Delta \tau_{w}$	$\Delta \tau_{h}$	$\Delta \tau_{h} / \Delta \tau_{w}$
SD	$5.59 \cdot 10^{-3}$	$6.20 \cdot 10^{-3}$	1.11
CSF	$5.20 \cdot 10^{-5}$	$1.12 \cdot 10^{-3}$	21.50
Ratio	107.51	5.55	

Computational Cost

Performance penalty of spin-adapted FCIQMC implementation: Additional scaling cost of $\approx \mathcal{O}\left(n^{1.3}\right)$, with cardinal number n

Time-step $\Delta \tau$ (left) and time per iteration (right) vs. cardinal number of cc-pVnZ basis set for N_{2} at $r=4.2 a_{0}$

Summary and Outlook

Summary and Outlook

Spin-adapted FCIQMC

- Efficient implementation via the GUGA
- Target specific spin states, reduce Hilbert space size and remove spin contamination
- Improve convergence for systems with small spin-gap
- Spin gap of cobalt in good agreement with experiment and systems with up to 30 open-shell orbitals possible

Outlook:

- Spin-pure RDMs to allow for fully spin-adapted Stochastic CASSCF calculations (Giovanni is desperately waiting for it, sorry...)
- Spin-free formulation of t-J and Heisenberg model (Optimization necessary to push lattice sizes)

Thank you for your attention!

Double Excitations

- Excitations and matrix elements for two-body term

$$
\left\langle d^{\prime}\right| \hat{E}_{i j} \hat{E}_{k l}-\delta_{j k} \hat{E}_{i l}|d\rangle
$$

much more complicated

- Classification of generators as raising (R) if $i<j$ or lowering (L) if $i>j$
- 19 types of distinct combinations, depending on order of indices (i, j, k, l)
- Branching tree and on-the-fly matrix element calculation still applicable

Double Excitations

$$
\left.\begin{array}{cccccc}
\bar{R} \\
\underline{R \bar{L}})^{2} & \underline{L} \bar{L}^{\prime}
\end{array}\right)
$$

Nitrogen Atom - Spin-gap

Result: Spin-Gap and EA of Scandium

C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, Chem. Phys. Let., 158, 245 (1989); G. Jeung, Phys. Let. A, 113, 73 (1985)

Result: Spin-Gap and EA of Scandium

Electron affinities and Sc^{-}singlet-triplet spin-gap vs. cardinal number of basis set in $m E_{h}$

n	${ }^{2} D-{ }^{1} D$	${ }^{2} D-{ }^{3} D$	$\mathrm{Sc}^{-1} D-{ }^{3} D$
2	$7.740(75)$	$0.380(77)$	$7.341(76)$
3	$7.34(54)$	$2.572(77)$	$4.99(33)$
4	$6.67(75)$	$2.381(65)$	$4.80(42)$
CBS	6.2 ± 1.4	2.24 ± 0.13	4.66 ± 0.76
Exp.	6.95 ± 0.74	1.54 ± 0.74	5.40 ± 1.47
ΔE	0.8 ± 2.1	-0.70 ± 0.86	0.7 ± 2.2

- Electron affinities and spin-gap in good agreement with experiment [Feigerle et al., 1981, Sugar and Corliss, 1985]
- Singlet ${ }^{1}$ D state undisputed ground state
C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, Chem. Phys. Let., 158, 245 (1989); G. Jeung, Phys. Let. A, 113, 73 (1985)

