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Motivation



Electronic Structure Theory

Goals:

• High accuracy ab initio calculations for strongly correlated

systems

• We want: accuracy, predictability and interpretability to

compare with experiment

• Beyond HF & DFT: ⇒ stochastic wavefunction theory

Problems:

• small (near-degenerate) spin-gaps and spin-contamination

problematic for convergence of projective techniques

• no control and insight of total spin quantum number with

Slater determinants (hard to interpret)

Idea: Formulate FCIQMC in a spin-adapted basis
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Spin Symmetry and the

Graphical Unitary Group

Approach (GUGA)



Spin Symmetry

Inherent to spin-preserving, non-relativistic Hamiltonians:

[Ĥ, Ŝ2] = 0

often not directly imposed, due to impractical implementation.

Benefits of a spin-symmetry adapted basis:

• target specific spin-states (singlet, triplet,. . . )

• no spin-contamination

• reduce Hilbert space size!

• resolve (near-)degeneracies of different spin-sectors

→ Use Configuration state functions (CSFs) in FCIQMC
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The Unitary Group Approach

• Spin-free formulation of non-relativistic Hamiltonian:

Ĥ =

n∑
ij

tij Êij +
1

2

n∑
ijkl

Vijkl

(
ÊijÊkl − δjkÊil

)
• Spin-preserving excitation operators:

Êij = ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓, with [ Êij , Ŝ
2 ] = 0

• same commutation relations as generators of the Unitary

Group U(n) → find invariant and irreducible basis

• Sequential orbital coupling based on group chain:

U(1) ⊂ U(2) ⊂ · · · ⊂ U(n− 1) ⊂ U(n)

J. Paldus, J. Chem. Phys. 61, 5321 (1974); I. M. Gel’fand and M. L. Tsetlin, Doklady Akad.
Nauk SSSR, 71, 1017 (1950) 3



The Gel’fand-Tsetlin Basis

4 ways of coupling a orbital:

di ∆Ni ∆Si

0 0 0 0

u 1 1 1/2

d 2 1 −1/2

2 3 2 0

For each spatial orbital (i) step-value

di encodes:

• ∆Ni : change in total electron

number

• ∆Si : change in total spin with

S ≥ 0

• 2 bit per spatial orbital, like SD

CSF given by step-vector |d〉. E.g. 8 e− in 8 orbitals with S = 1:

|d〉 = |1, 0, 1, 2, 3, 1, 0, 3〉
≡ |u, 0, u, d, 2, u, 0, 2〉 1 2 3 4 5 6 7 8

0
0.5

1

i

S
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Intermezzo: Excitation generation in

FCIQMC
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FCIQMC

Population dynamics of walkers governed by:

ci(τ + ∆τ) = [1−∆τHii] ci(τ)︸ ︷︷ ︸
death/cloning

−∆τ
∑
j 6=i

Hijcj(τ)

︸ ︷︷ ︸
spawning

Spawning step: |Di〉 → |Dj〉 with pgen =
∆τ |Hij |
p(j|i)

Ψ(τ):

Di

Dk

Dj

Dl

−∆τĤ

∆τĤij

Need efficient Hij

matrix element

calculation and

excitation generation,

|Di〉 → |Dj〉
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Matrix Elements and Excitations via the Graphical UGA

Calculate MEs and generate excitations with Graphical UGA:

〈d′| Ĥ |d〉 =

n∑
ij

tij 〈d′| Êij |d〉+
1

2

n∑
ijkl

Vijkl 〈d′| (ÊijÊkl−δjkÊil) |d〉

Êij moves electron from j to i with all symmetry allowed

spin-recouplings, opposed to SD more than one excitation

possible:

Êij |d〉 =
∑
n

Cn |d′n〉 Êij |d〉 |d′2〉
|d′1〉

|d′3〉
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Matrix Elements and Excitations via the Graphical UGA

Single excitations

〈d′|Êij |d〉 =

j∏
k=i

W (d′k, dk, Sk)

Double excitations

〈d′|ÊijÊkl − δjkÊil|d〉 =
∑
x=0,1

∏
k

Wx(d′k, dk, Sk)

|d〉

〈d′|

i

j

1

0

3

2

3

0

3

0

In FCIQMC we only need one connected

state!

⇒ Loop over i→ j : select one excitation

randomly through branching tree and

calculate matrix element on the fly!

Êij |d〉 |d′2〉
|d′1〉

|d′3〉

I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977) 7



The Branching Tree

1

0

1

2

3

1

0

3

|d〉
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1
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1

1

3

0

3

2

1

3

0

3

2

2

3

0

3

all possible excitations Ê26 |d〉
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0
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|d′〉

Randomly chosen excitation and on-the-fly ME calculation 8



Results



Nitrogen Dimer - Spin-resolved binding curve

• Optimal test case for

spin-adapted

approach

• 4 degenerate spin

states at dissociation

• Spin-resolved

binding curve in a

cc-pVDZ basis

• Dissociation energy

within chemical

accuracy

2sA

2pA

2sB

2pB

σg

σ∗u

πu

σg

π∗g

σ∗u

More by Giovanni maybe 9



Nitrogen Dimer - Spin-resolved binding curve

• Optimal test case for

spin-adapted

approach

• 4 degenerate spin

states at dissociation

• Spin-resolved

binding curve in a

cc-pVDZ basis

• Dissociation energy

within chemical

accuracy
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Nitrogen Dimer

Improved convergence of small spin-gaps with GUGA-FCIQMC
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Results: Spin-Gap of the Cobalt Atom

4s

3d

4s

3d2F:

4F:

4F 3d74s2

4F 3d84s

2F 3d84s

4P 3d74s2

E

• Difficulties:

-Restricting ms converges to

high-spin GS

-Inaccessible by previous

spin-adaptation, due to odd

numbers of electrons

• Open-shell low-spin excited state:

multi-reference character of 2F

state problematic for

single-reference methods
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Results: Spin-Gap of the Cobalt Atom
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GUGA-FCIQMC and UCCSD(T) spin-gap
vs. cardinal number of basis set

• Spin-gap ∆ED−Q(TQ) = 21.17± 0.59 kcal/mol

∆Eexp = 20.26 kcal/mol [Sugar and Corliss, 1985]
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Pushing the limits: Hydrogen chain at dissociation

Number of open-shell orbitals is the restricting factor in

spin-adapted approaches. Worst case:

Hydrogen chain (in a minimal basis) at dissociation:

L S ∆E | mEh

10 0 -0.00084(88)

10 1 -0.0059(10)

10 2 -0.00020(95)

20 0 -0.03719(35)

20 1 -0.0055(22)

20 2 -0.0026(15)

30 0 -1.1623(43)∗

S = 0, 1 and 2 groundstate energy of a

L-hydrogen chain at r = 3.6 a0 in a

STO-6G basis set compared to DMRG

and MRCI+Q reference results.

Wavefunction is highly

multiconfigurational and dominated by

all-open-shell CSFs.

∗ better accuracy with non-initiator calculation! 12



Pushing the limits: large U Hubbard model in a real-space

basis - the Nagaoka Ferromagnetism

Groundstate energy as function of Sz (left) and S (right) for

increasing U/t for 15 e− on a 4×4 square lattice
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SD-based calculation converges to high-spin groundstate!

Sujun Yun, in preperation 13



Histogram-based time-step

optimization



Conventional time-step “optimization”

• Adapt ∆τ to ensure the number of spawned walkers:

∆τ
|Hij |
p(j|i) ≈ 1.

• As a consequence the global time-step is determined by a

single “worst-case”
|Hij |
p(j|i) ratio, once and for all.

• This also implies a very rare spawn, p(j|i)� 1, determines

the dynamics of the entire simulation.

• Especially damaging in the spin-adapted GUGA approach,

with lower p(j|i) due to the increased connectivity in a

CSF basis.
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Histogram-based time-step optimization

Instead of using worst-case
|Hij |
p(j|i) : histogram all occurrences and

integrate to cover a chosen threshold (Default: 99.99%)

⇒ Almost all excitation are covered and time-step is not dominated

by worst-case outliers!

0 50 100 150 200

|Hij |/pij

0

1

2

3

4

n
or

m
al

iz
ed

o
cc

u
re

n
ce

×10−2

Slater determinants

Weighted symmetry restr.

non-symmetric
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Worst case, ∆τw, and histogrammed

time-step ∆τh (99.99%) for the SD- and

CSF-based N2 calc. at equilibrium.

Basis ∆τw ∆τh ∆τh/∆τw

SD 5.59 · 10−3 6.20 · 10−3 1.11

CSF 5.20 · 10−5 1.12 · 10−3 21.50

Ratio 107.51 5.55
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Computational Cost

Performance penalty of spin-adapted FCIQMC implementation:

Additional scaling cost of ≈ O(n1.3), with cardinal number n
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Time-step ∆τ (left) and time per iteration (right) vs. cardinal number of
cc-pVnZ basis set for N2 at r = 4.2 a0
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Summary and Outlook



Summary and Outlook

Spin-adapted FCIQMC

• Efficient implementation via the GUGA

• Target specific spin states, reduce Hilbert space size and

remove spin contamination

• Improve convergence for systems with small spin-gap

• Spin gap of cobalt in good agreement with experiment and

systems with up to 30 open-shell orbitals possible

Outlook:

• Spin-pure RDMs to allow for fully spin-adapted Stochastic

CASSCF calculations (Giovanni is desperately waiting for

it, sorry...)

• Spin-free formulation of t-J and Heisenberg model

(Optimization necessary to push lattice sizes)
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Thank you for your attention!
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Double Excitations

• Excitations and matrix elements for two-body term

〈d′|ÊijÊkl − δjkÊil|d〉

much more complicated

• Classification of generators as raising (R) if i < j or

lowering (L) if i > j

• 19 types of distinct combinations, depending on order of

indices (i, j, k, l)

• Branching tree and on-the-fly matrix element calculation

still applicable



Double Excitations
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Nitrogen Atom - Spin-gap
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Result: Spin-Gap and EA of Scandium

2D 3d4s2

4F 3d24s

E

1D/3D?

3d4s24p

Sc Sc−
• Surprising occupation of 4p

orbital of Sc−

• Experimental uncertain ordering

of Sc− bound states

• Open shell singlet or triplet GS?

• Multi-reference character of

open-shell singlet problematic for

single-reference methods

C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, Chem. Phys. Let., 158, 245 (1989); G.
Jeung, Phys. Let. A, 113, 73 (1985)



Result: Spin-Gap and EA of Scandium

2D 3d4s2

4F 3d24s

E

1D/3D?

3d4s24p

Sc Sc−
Electron affinities and Sc− singlet-triplet
spin-gap vs. cardinal number of basis set in
mEh

n 2D − 1D 2D − 3D Sc− 1D − 3D

2 7.740(75) 0.380(77) 7.341(76)

3 7.34(54) 2.572(77) 4.99(33)

4 6.67(75) 2.381(65) 4.80(42)

CBS 6.2 ±1.4 2.24 ±0.13 4.66 ±0.76

Exp. 6.95 ±0.74 1.54 ±0.74 5.40 ±1.47

∆E 0.8 ±2.1 -0.70 ±0.86 0.7 ±2.2

• Electron affinities and spin-gap in good agreement with

experiment [Feigerle et al., 1981, Sugar and Corliss, 1985]

• Singlet 1D state undisputed ground state
C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, Chem. Phys. Let., 158, 245 (1989); G.
Jeung, Phys. Let. A, 113, 73 (1985)
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