Spin-pure Stochastic-CASSCF in OpenMolcas via spin-adapted FCIQMC (GUGA-FCIQMC)

applied to the $[Fe_2^{(III)}S_2]^{2-}$ model system

Werner Dobrautz 8th OpenMolcas Developers' e-Meeting 2020 Stuttgart, June 17th, 2020

Max Planck Institute for Solid State Research

Motivation

• Theory and Implementation

• Results for the $[Fe_2^{(III)}S_2]^{2-}$ model system

Conclusion, Summary and Outlook

Motivation

Electronic Structure Theory

Goals:

- *High accuracy ab initio* calculations for strongly correlated systems
- We want: accuracy, predictability and interpretability to compare with experiment
- Beyond HF & DFT: \Rightarrow Combine CASSCF with FCIQMC as CI-solver †

Problems:

- small (near-degenerate) spin-gaps and spin-contamination problematic for convergence of projective techniques (like FCIQMC)
- no control and insight of total spin quantum number with Slater determinant formulation (hard to interpret)

 $\underline{\mathbf{Idea:}}$ Formulate FCIQMC and sample RDMs in a spin-adapted basis

Theory and Implementation

FCIQMC

• *Projector method* based on the imaginary-time Schrödinger equation, stochastically sampling FCI wavefunction:

$$\frac{\partial |\Psi\rangle}{\partial \tau} = -\hat{H} |\Psi\rangle \quad \rightarrow \quad |\Psi_0\rangle \propto \lim_{\tau \to \infty} e^{-\tau \hat{H}} |\Phi\rangle$$

• First order Taylor expansion $e^{-\Delta \tau \hat{H}} \approx 1 - \Delta \tau H$ leading to the working equation:

$$c_i(\tau + \Delta \tau) = \underbrace{\left[1 - \Delta \tau H_{ii}\right]c_i(\tau)}_{\text{diagonal}} - \underbrace{\Delta \tau \sum_{j \neq i} H_{ij}c_j(\tau)}_{\text{off-diagonal}}$$

• *Population dynamics* of **"walkers"** simulate the working equation. Booth, Thom, and Alavi, JCP, **131**, 054106 (2009)

FCIQMC

Population dynamics of walkers governed by:

$$c_i(\tau + \Delta \tau) = \underbrace{\left[1 - \Delta \tau H_{ii}\right]c_i(\tau)}_{\text{death/cloning}} - \underbrace{\Delta \tau \sum_{j \neq i} H_{ij}c_j(\tau)}_{\text{spawning}}$$

Spawning step:
$$|D_i\rangle \rightarrow |D_j\rangle$$
 with $p_{gen} = \frac{\Delta \tau |H_{ij}|}{p(D_j|D_i)}$

Need efficient H_{ij} matrix element calculation, excitation generation, and RDM sampling for excitation $|D_i\rangle \rightarrow |D_j\rangle$ Inherent to spin-preserving, non-relativistic Hamiltonians:

 $[\hat{H}, \hat{\mathbf{S}}^2] = 0$

often not directly imposed, due to impractical implementation.

Benefits of a spin-symmetry adapted basis:

- target specific spin-states (singlet, triplet,...)
- no spin-contamination
- reduce Hilbert space size!
- resolve (near-)degeneracies of different spin-sectors

 \rightarrow Use configuration state functions (CSFs) in FCIQMC[†]

 $^{\dagger}\textsc{Dobrautz},$ Smart and Alavi, JCP, $\mathbf{151},$ 094104 (2019)

The (Graphical) Unitary Group Approach

• **Spin-free** formulation of non-relativistic Hamiltonian:

$$\hat{H} = \sum_{ij}^{n} t_{ij} \,\hat{E}_{ij} + \frac{1}{2} \sum_{ijkl}^{n} V_{ijkl} \left(\hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} \right)$$

• Spin-preserving excitation operators:

$$\hat{E}_{ij} = \hat{c}^{\dagger}_{i\uparrow}\hat{c}_{j\uparrow} + \hat{c}^{\dagger}_{i\downarrow}\hat{c}_{j\downarrow}, \quad \text{with} \quad [\hat{E}_{ij}, \hat{\mathbf{S}}^2] = 0$$

same commutation relations as generators of the Unitary Group U(n). Invariant and irreducible basis[†] \Rightarrow CSFs

• Efficient matrix element computation and excitation generation with Graphical UGA (GUGA)*

Paldus, JCP **61**, 5321 (1974); Gel'fand and Tsetlin, Dokl. Akad. Nauk SSSR, **71**, 1017 (1950)[†]; Shavitt, Int. J. Quantum Chem., **12**, 131 (1977)^{*}

Spin-free RDMs with GUGA-FCIQMC

One- and two-body RDMs:

$$\rho_{ij} = \langle \Psi | \hat{E}_{ij} | \Psi \rangle = \sum_{dd'} c_d^{(\mathrm{II})} c_{d'}^{(\mathrm{II})} \langle d' | \hat{E}_{ij} | d \rangle, \quad \Gamma_{jl,ik} = \frac{1}{2} \langle \Psi | \hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} | \Psi \rangle$$

Replica trick^{*}: two statistically independent simulations (I and II) for unbiased RDMs necessary! (Twice the computational cost)

• Sample ρ_{ij} and $\Gamma_{jl,ik}$ in the random excitation process $|d\rangle \rightarrow |d'\rangle$

- Already for SDs: store 'parent' state $|d\rangle$, coefficient c_d and source (I,II) along $|d'\rangle$
 - New for GUGA: store coupling coefficient $\langle d'|\hat{E}_{ij}|d\rangle$, information of the excitation type and 'original' probability $p(d \to d'|i, j, k, l)$

*Overy, Booth, Blunt, Shepherd, Cleland, Alavi, JCP, **141**, 244117 (2014)

Spin-free RDMs with GUGA-FCIQMC cont.

• Coupling coefficients $\langle d' | \hat{E}_{ij} | d \rangle = \prod_{k=i}^{j} W(d'_k, d_k, S_k)$:

More complicated as for SDs, but already calculated **on-the-fly** in *excitation generation*

• Additional information on excitation type:

Excitation identification, like the involved spatial indices (i, j, k, l), more costly as for SDs (but already available)

• <u>'original'</u> probability $p(d \rightarrow d' | i, j, k, l)$:

Different exchange type double excitations $\hat{E}_{ij}\hat{E}_{ji}$ can lead to same $|d\rangle \rightarrow |d'\rangle$. Needs to be considered for unique total generation probability, but for RDM sampling we need to unbias this

 \Rightarrow We need to communicate **three additional 64bit integers**. Communicating accumulated data every 1000 iterations **only** \approx 10% increase in time per iteration!

 $|\mu\rangle$

(i, j) :

(i', i'):

 $|d\rangle:|uuuudududdu\rangle$

 $|d'\rangle:|uu \underline{d} u \underline{d} u \underline{d} u \underline{d} u \rangle$

Results for the $[\mathbf{Fe}_2^{(\mathbf{III})}\mathbf{S}_2]^{2-}$ model system

$[\mathbf{Fe}_2^{(\mathbf{III})}\mathbf{S}_2]^{2-}$ - Model System

- Largest considered active space here: <u>22 electrons in 26 orbital</u>, containing the 20 iron valence 3d and double-shell d' and the 6 3p orbitals of the bridging sulfurs
- CAS(10,10): 10 iron valence 3d orbitals
- CAS(10,12): 10 iron valence 3d and 2 4s orbitals
- CAS(10,20): 10 iron valence 3d and 10 double-shell d' orbitals
- $\underline{CAS(22,16)}$: 10 iron valence 3d and 6 3p bridging sulfur orbital

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020)

Importance of Localized and Ordered Orbitals

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020)

Results - CAS(10,10) Test-case

Starting from the SD-based optimized CAS(22,26) 'singlet' orbitals.

Deterministic triplet CASSCF starting from the **CSF-based optimized CAS(10,10)** of different spin-states.

Results - CAS(10,20)

Singlet, Triplet and 11-tet CASSCF starting from the CAS(22,26) SD-optimized 'singlet' orbitals.

Deterministic triplet CASSF starting from the CSF-optimized pseudo-natural and localized CAS(10,20) pure singlet orbitals.

Results - CAS(22,26)

Singlet, triplet and 11-tet spin-pure stochastic CASSCF calculations with 50M walkers starting from the CAS(22,26) SD-optimized 'singlet' orbitals.

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020)

$[\mathbf{Fe}_2^{(\mathbf{III})}\mathbf{S}_2]^{2-}$ Orbital Relaxation versus Active Space Size

Orbital relaxation from CAS(22,26) SD-optimized orbitals.

Orbital relaxation from **GUGA-optimized** singlet-orbitals within active space (Except (22,26)!)

$[\mathbf{Fe}_2^{(\mathbf{III})}\mathbf{S}_2]^{2-}$ Spin-gaps versus Active Space Size

Conclusion, Summary and Outlook

Conclusion and Summary

- Spin-pure Stochastic-CASSCF with spin-free RDMs from GUGA-FCIQMC, used as the CI-solver interfaced with OpenMolcas for large active space sizes
- Allows to target specific spin-states with no spin-contamination and resolve even near-degenerate spin-states
- Manageable computational overhead (only $\approx 10\%$ increased time per iteration)
- Spin-gaps and orbital relaxation effect for $[Fe_2^{(III)}S_2]^{2-}$ model system as a function of active space size
- Fast CASSCF convergence starting from 'neighboring' spin-state orbitals
- Stochastic noise in GUGA-FCIQMC RDMs **can** be beneficial for CASSCF convergence
- @ Vera Krewald talk today: In principle we can do state-averaged spin-pure CASSCF in Molcas now

Outlook

Target more realistic (bigger) systems \Rightarrow algorithmic advances!

Time-step $\Delta \tau$ and time per iteration for N₂ at 4.2Å separation versus basis set size. 10 electrons in a cc-pVnZ basis.

Dobrautz, Smart and Alavi, JCP, **151**, 094104 (2019); [†]Holmes, Changlan, Umrigar, JCTC, **12**, 4, 1561(2016) 16

Outlook

Target more realistic (bigger) systems \Rightarrow algorithmic advances!

Heat-bath[†] excitation generation for GUGA-FCIQMC!

Dobrautz, Smart and Alavi, JCP, **151**, 094104 (2019); [†]Holmes, Changlan, Umrigar, JCTC, **12**, 4, 1561(2016) 16

Outlook

Target more realistic (bigger) systems \Rightarrow algorithmic advances!

But also for SD-based FCIQMC...

Dobrautz, Smart and Alavi, JCP, **151**, 094104 (2019); [†]Holmes, Changlan, Umrigar, JCTC, **12**, 4, 1561(2016) 16

Acknowledgment

Thank you for your attention!

Stochastic-CASSCF for SDs implemented by G. Li Manni and S. Smart †

Additional input for a stochastic GUGA-FCIQMC CASSCF calculation: fciqmc.input: molcas.input:

SYSTEM

nonuniformrandexcits pchb guga 2S ENDSYS LOGGING print-molcas-rdms ENDLOG

Produces DMAT, PSMAT, PAMAT and NEWCYCLE files containing the **spin-free** RDMs and the RDM energy used by Molcas &RASSCF

neci

guga

Produces the **\$Project.FciDmp** file containing the new molecular integrals used by our FCIQMC code NECI, with output:

Run spin-free GUGA NECI externally. Get the ASCII formatted FCIDUMP: cp \$MOLCAS_RUN_DIR/\$Poject.FciDmp \$NECI_RUN_DIR

When finished do: cp PSMAT PAMAT DMAT NEWCYCLE \$MOLCAS_RUN_DIR

[†]Li Manni, Smart, Alavi, JCTC **12**, 3, 1245 (2016)

Results - CAS(10,10) Test-case

Deterministic <u>11-tet</u> CASSCF starting from the **CSF-based optimized CAS(10,10)** of different spin-states.

Results - CAS(22,16)

Singlet, Triplet and 11-tet CASSCF starting from the CAS(22,26) SD-optimized 'singlet' orbitals.

Deterministic triplet CASSF starting from the pseudo-natural and localized CAS(22,16) singlet orbitals.

Results - CAS(22,26) cont.

Singlet (left), triplet (middle) and 11-tet (right) spin-pure stochastic CASSCF calculations with **50M walkers** starting from the **CAS(22,26) SD-optimized 'singlet' orbitals.**

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020)

4 ways of coupling a orbital:

d_i		ΔN_i	ΔS_i
0	0	0	0
u	1	1	1/2
d	2	1	-1/2
2	3	2	0

For each *spatial* orbital (i) **step-value** d_i encodes:

- ΔN_i : change in total electron number
- ΔS_i : change in total spin with $S \ge 0$
- 2 bit per spatial orbital, like SD

CSF given by step-vector $|d\rangle$. E.g. 8 e⁻ in 8 orbitals with S = 1:

Calculate MEs and generate excitations with **Graphical** UGA:

$$\langle d' | \hat{H} | d \rangle = \sum_{ij}^{n} t_{ij} \langle d' | \hat{E}_{ij} | d \rangle + \frac{1}{2} \sum_{ijkl}^{n} V_{ijkl} \langle d' | (\hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il}) | d \rangle$$

 \hat{E}_{ij} moves electron from j to i with all symmetry allowed spin-recouplings, opposed to SD more than one excitation possible:

Matrix Elements and Excitations via the Graphical UGA

Single excitations

$$\langle d'|\hat{E}_{ij}|d
angle = \prod_{k=i}^{j} W(d'_k, d_k, S_k)$$

Double excitations

$$\langle d'|\hat{E}_{ij}\hat{E}_{kl} - \delta_{jk}\hat{E}_{il}|d\rangle = \sum_{x=0,1} \prod_k W_x(d'_k, d_k, S_k)$$

In FCIQMC we only need **one** connected state! \Rightarrow Loop over $i \rightarrow j$: select *one* excitation randomly through **branching tree** and calculate matrix element *on the fly!* Shavitt, Int. J. Quantum Chem., **12**, 131 (1977)

The Branching Tree

Randomly chosen excitation and on-the-fly ME calculation

Results - CAS(22,26)

Singlet, triplet and 11-tet spin-pure stochastic CASSCF calculations with 50M walkers starting from the CAS(22,26) SD-optimized 'singlet' orbitals.

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020)

Results - CAS(22,26) cont.

Singlet (left), triplet (middle) and 11-tet (right) spin-pure stochastic CASSCF calculations with 50M walkers starting from the CAS(22,26) SD-optimized 'singlet' orbitals.

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020)

Results - CAS(22,26) cont.

CAS(22,26) Singlet GUGA-FCIQMC RDM energies.

Results - CAS(22,26) Singlet Orbital Differences (Isovalue level: 0.0001)

Singlet: Cycle 1 - Final

Final Singlet - Triplet difference