
Quantum simulations and quantum/computational

chemistry

in MCC185: From quantum optics to Quantum Technology

Werner Dobrautz

Chalmers University of Technology

November 6, 2023



Outline

Motivation – Goals

Quantum Chemistry – Electronic Structure Theory

– The case for Quantum Computing

Digital Quantum Simulation/Computation

– The Jordan-Wigner Mapping

– Quantum Circuit Model

Variational Quantum Eigensolver (VQE)

– Wave function Ansätze



Motivation – Goals



Big Picture

Learning goals:

• What is quantum computational chemistry (roughly)?

• Why is it worthwhile? What are limitations of “classical” approaches?

• Why and how can quantum computing help?

• How can we represent quantum chemical problems on quantum hardware?

• How can we solve it?

• Rough understanding of the variational quantum eigensolver as an example.
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Ab Initio Quantum Chemistry – Electronic Structure Theory

YBCO∗: Unconventional
high-Tc superconductivity

Iron-Sulfur clusters:
electron transfer proteins

FeMo-cofactor:
catalyst for N2 reduction →
improve Haber-Bosch process

Mn4O5Ca in Photosystem
II: enable artificial
photosynthesis process

Interesting systems/materials usually challenging for computational approaches! 2



Ab Initio Quantum Chemistry – Electronic Structure Theory

• Discover new materials/catalysts?

• Drug design?

• Chemical reactions for battery development?

→ ∼ 30% of high-performance computing for chemistry-related problems

• Q: What are you interested in?

• “Solving the puzzles of nature”?

We need an accurate theoretical understanding at nano-scale for bottom-up

materials design!
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Quantum Chemistry – Electronic

Structure Theory



Ab Initio Quantum Chemistry – Electronic Structure Theory

All necessary information of a quantum system contained in electronic molecular

Hamiltonian (Born-Oppenheimer approx. and atomic units)

Ĥ = −
∑
i

∇2
ri︸ ︷︷ ︸

kinetic energy of e−

+
1

2

∑
i6=j

1

|ri − rj |︸ ︷︷ ︸
e−− e− repulsion

−
∑
I,j

ZI
|RI − rj |︸ ︷︷ ︸

Potential

Ae e

rij

Rij

Electronic properties: Ground- and low-lying excited state properties, energy

differences, polarization, response functions, ...

Target: High / “chemical accuracy” to ensure predictability, interpretability and

comparison with experimental results

Task: Solve the Schrödinger equation derived from first principles:

Ĥ |Ψ(r1, . . . , rn)〉 = E0 |Ψ(r1, . . . , rn)〉
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Ab Initio Quantum Chemistry – Electronic Structure Theory

Second quantized form of molecular Hamiltonian:

Ĥ =
∑
i,j

tij
∑
σ=↑,↓

a†i,σaj,σ︸ ︷︷ ︸
kinetic/hopping term

+
∑
i,j,k,l

Vijkl
∑
σ,τ=↑↓

a†i,σa
†
j,τal,τak,σ︸ ︷︷ ︸

e−-e− interaction term

a
(†)
i,σ annihilates(creates) an electron with spin σ = {↑, ↓} in orbital i. The

combination (i, σ) is often called “spin-orbital”.

We have to choose a basis/orbitals we perform our calculations in! In quantum

chemistry: starting orbitals are most often “atomic-like” orbitals (for each atom):

1s 2s

2px 2py

2pz
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(Anti-)Symmetric wave functions – Pauli exclusion principle

• For Fermions, the Pauli exclusion principle requires the wavefunction to be

anti-symmetric under the exchange of two particles:

Ψ(r1, r2, . . . , ri, . . . , rj , . . . , rN ) = −Ψ(r1, r2, . . . , rj , . . . , ri, . . . , rN )

• While Bosonic wave functions are symmetric under the exchange of particles

Ψ(r1, r2, . . . , ri, . . . , rj , . . . , rN ) = Ψ(r1, r2, . . . , rj , . . . , ri, . . . , rN )
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Occupation number representation – Commutation relations

• a†i,↑ creates an electron with up-spin, ↑, in orbital i, e.g. for 2 electrons in 2

orbitals (=4 spin-orbitals): a†1,↑a
†
2,↓ |vac〉 = |1001〉:

|1001〉

• Pauli-principle/(anti-)symmetry due do (anti-)commutation relations:{
ai , aj

}
= aiaj + ajai =

{
a†i , a

†
j

}
= 0,

{
ai, a

†
j

}
= δi,j for Fermions[

ci , cj

]
= cicj − cjci = 0,

[
ci, c

†
j

]
= δi,j for Bosons

• Exercise: Convince yourself that anti-symmetry and Pauli exclusion principle (no two

electrons with same quantum numbers) follow from anti-commutation property, e.g. for a 2

electron in 4 spin-orbital wave function, |Ψ〉 = a†1,↑a
†
1,↓ |0〉 = |1100〉
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Computational approaches, cost and accuracy

There is a long history and wide variety of computational approaches in quantum

chemistry. Accuracy vs. computational cost:

N3 N5 N7 eN N !

Computational cost

A
cc

u
ra

cy

Hartree-Fock/DFT

Perturbation Theory

Coupled cluster

DMRG/Monte Carlo

FCI/Exact diag.

chemical accuracy
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Exponential scaling of Full Configuration Interaction (FCI)

FCI/Exact diagonalization (ED) ⇒ exact solution in a given basis: linear combination of

determinants

|Ψ〉 = |ΦHF 〉+
∑
i

ci |Φi〉

|ΦHF 〉

...

k

j

i

a

b

c

|Φa
i 〉+

...

|Φab
ij 〉+

...

|Φabc
ijk〉+ + · · ·

...

All possible excitations from HF determinant

Number of possible states for given number
of electrons, N , and orbitals, n: ∼

(
N
n

)
Mol. #orbitals #electrons #states

H2 2 2 4

LiH 4 4 36

Be2 8 8 4900

H2O 12 12 ∼ 8 · 105

C2H4 16 16 ∼ 16 · 106

F2 18 18 ∼ 2 · 109
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Quantum Computing

@ Chalmers

0011

0101

0110

1001

1010

1100

Exponentially scaling FCI |Ψ〉 ∼
(
N
n

)
. n qubits can encode

∼ 2n states. Quantum algorithms use entanglement, su-

perposition and interference to find solution

qubit1︷ ︸︸ ︷
(|0〉1 + |1〉1)⊗

qubit2︷ ︸︸ ︷
(|0〉2 + |1〉2)

= |00〉+ |01〉+ |10〉+ |11〉

|q1〉 ⊗ |q2〉 ⊗ |q3〉 =

= |000〉+ |001〉+ |010〉+ |100〉
+ |011〉+ |101〉+ |110〉+ |111〉

IBM Quantum Roadmap∗

Year 2019 2020 2021 2022 2023 beyond

# qubits 27 65 127 433 1121 ...

Benioff, J. Stat. Phys. 22 (5), 563 (1980); Feynman, Int. J. Theo. Phys. 21 (6/7), 467 (1982); Preskill, Quantum 2, 79 (2018); ∗
https://research.ibm.com/blog/ibm-quantum-roadmap

https://research.ibm.com/blog/ibm-quantum-roadmap


The case for quantum

Quantum chemistry potential use-case / killer-application of noisy intermediate-scale

quantum (NISQ) devices and “quantum advantage” for relevant systems

• Efficient encoding of exponentially scaling wavefunction

• Effective measurement of Hamiltonian expectation values

• A system with > 60 qubits cannot be simulated with a

classical computer

• A moderately-sized quantum processor (≈ 100 qubits)

could outperform supercomputers for exact solutions

• But how do we tackle the problem on quantum

hardware?

Kassal et al., Annu. Rev. Phys. Chem. 2011. 62:185 (2010)



Overview: Quantum Chemistry on Quantum Computers

Current quantum hardware has many problems still: noise, decoherence and limited

number of qubits – noisy intermediate-scale quantum (NISQ) era

Hybrid quantum-classical approach:

QPU

1.
# of
qubits ...

...
Quantum

circuit
Û(θ)

H

Ry(θ)

Y

Z

. . .

Measure

〈Ψ(θ)|Ô|Ψ(θ)〉

Classical
computer

Update parameters θ

2. Circuit depth

– Use pros of both classical and

quantum hardware

– Use short-depth quantum

circuits that fit current hardware

– Can improve on classical

estimates by non-classical states

– Store quantum state with

exponentially fewer resources
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Example: Classic solution of hydrogen molecule – H2

Hydrogen molecule in a “minimal” basis set: 1s orbital for each hydrogen.

4-dimensional Hilbert space for two electrons in two orbitals (4 spin-orbitals).

|1〉:

|2〉:

|3〉:

|4〉:

|1001〉

|0110〉

|0011〉

|1100〉

Construct matrix representation of quantum chemistry Hamiltonian in this basis,

Hij = 〈i| Ĥ |j〉, → diagonalize → exact solution in given basis

Jupyter Notebook 13

http://localhost:8888/lab/tree/Tutorial.ipynb


Example: Hydrogen molecule – H2 – PES

1 2 3 4
Distance a.u.

1.1

1.0

0.9

0.8

0.7

0.6

E
ne

rg
y 

a.
u.

H2 FCI Energy

Equilibrium

Dissociation

Groundstate wavefunction at equilibrium: |Ψ0〉 = 0.995 |1100〉 − 0.105 |0011〉
Groundstate wavefunction at dissociation: |Ψ0〉 = 1√

2
(|1100〉 − |0011〉)
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Digital Quantum

Simulation/Computation



Digital Quantum Simulation/Computation

1. Map fermionic Hamiltonian onto quantum hardware/qubits

2. Use quantum algorithms to solve the problem at hand

Circuit model: Lines/wires represent qubits, operations/gates acting on it from

left to right. Size of representable Hilbert space: 2N

↑
↓
↑
↓

q0

q1

q2

q3

0
0
0
0

Û(θ)

State preparation |Ψ(θ)〉
〈Ĥ〉

Measure observable 〈Ô〉
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Encoding the problem on a quantum computer

Qubits can quite naturally store the occupation of an spin-orbital:

|0〉-state/( 1
0 ): empty, |1〉-state/( 0

1 ): occupied

Also: action of creation and annihilation operators representable by Pauli matrices:

â† |0〉 =

(
0 0

1 0

)(
1

0

)
=
X̂ − iŶ

2

(
1

0

)
=

(
0

1

)
= |1〉

â |1〉 =

(
0 1

0 0

)(
0

1

)
=
X̂ + iŶ

2

(
0

1

)
=

(
1

0

)
= |0〉 ,

with the Pauli matrices

X̂ =

(
0 1

1 0

)
, Ŷ =

(
0 −i
i 0

)
, Ẑ =

(
1 0

0 −1

)
16



Anti-symmetry/Anti-commutation relations

However, electrons are indistinguishable Fermions, with anti-symmetric

wavefunction and anti-commuting creation/annihilation operators!{
a†i , a

†
j

}
= 0, a†ia

†
j = −a†ja

†
i

Unlike individually addressable qubits, with Pauli operators:(
Xi − iYi

2

)(
Xj − iYj

2

)
= +

(
Xj − iYj

2

)(
Xi − iYi

2

)

Exercise: Convince yourself of equation above, {σi, σj} = 2δi,j

Task: We need to map the fermionic Hamiltonian to a qubit Hamiltonian in

terms of Pauli operators, Ĥ =
∑

i ciP̂i

17



Jordan Wigner Mapping

Note, however, that the following Pauli operators anti-commute:

ẐX̂ = −X̂Ẑ, ẐŶ = −Ŷ Ẑ

Exercise: convince yourself of equation above

Jordan-Wigner encoding:

a†1 =
X1 − iY1

2

a†2 =Z1

(
X2 − iY2

2

)
a†3 =Z1Z2

(
X3 − iY3

2

)
a†i =

i−1⊗
j=1

Zj

(
Xi − iYi

2

)

• Fix anti-symmetry by tracking parity/phase before

each creation/annihilation operator with Ẑi

• Exercise: Demonstrate anti-symmetry of

JW-encoded a†3a
†
2 = −a†2a†3!
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JW Mapping – Recap

https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html

https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html
https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html


Quantum circuit model – details

Lines/wires represent qubits, operations/gates acting on it from left to right

q0

q1

q2

q3

0

0

0

0

↑

↓

↑

↓

X

X

H

Hadamard gate (H):

H =
1√
2

(
1 1

1 −1

)

Controlled NOT (CNOT): target qubit

(
⊕

) is inverted if control qubit (·) is

|1〉.

Exercise: what is the state |Φ〉 at the end of the above circuit?

In our case a qubit encodes the occupation of the associated spin-orbital

We will restrict ourselves to single-qubit rotational gates, e.g. X̂, Ŷ , and 2-qubits

entangling gates, like controlled NOT (CNOT) gates

Try: IBM Quantum Composer, IBM Quantum Lab

https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/composer/files/new
https://lab.quantum-computing.ibm.com/user/6229bcb6568c4aa197b0fee7/lab/tree/qiskit-tutorials/qiskit/circuits/01_circuit_basics.ipynb
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/


Parametrized gates

For flexibility, we need parametrized gates, e.g. rotation around axis:

RX(θ) = exp(−iθ
2
X̂) =

(
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

)

RY (θ) = exp(−iθ
2
Ŷ ) =

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)

RZ(φ) = exp−iφ
2
Ẑ =

(
exp(−iφ/2) 0

0 exp(iφ/2)

)

Can we express the groundstate wavefunction of H2 with parametrized gates?

Groundstate wavefunction at dissociation: |Ψ0〉 = 1√
2

(|1100〉 − |0011〉)

Try: IBM Quantum Composer 21

https://quantum-computing.ibm.com/composer/files/new


Parametrized gates – cont.

H2 groundstate wavefunction at equilibrium:

|Ψ0〉 = 0.995 |1100〉 − 0.105 |0011〉+ 0 · |1001〉+ 0 · |0110〉

Need a more general “Ansatz”, Û(θ) |0〉:

|Ψ(θ)〉 = Û(θ) |0000〉
!

= c1 |1100〉+ c2 |0011〉
+ c3 |1001〉+ c4 |0110〉

↑
↓
↑
↓

q0

q1

q2

q3

0
0
0
0

Û(θ)

State preparation |Ψ(θ)〉
〈Ĥ〉

Measure observable 〈Ô〉

The variational quantum eigensolver (VQE) is an algorithm to find the most

optimal parameters/angles θ of a given Ansatz Û(θ) to minimize the energy

expectation value,

E(θ) = min
θ
〈0| Û †(θ)ĤÛ(θ) |0〉

22



Variational Quantum Eigensolver

(VQE)



Hybrid quantum-classical algorithms – VQE

Leverage pros of both classical and quantum computers:

https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html; VQE: Peruzzo et al., Nature Comm., 5, 4213, (2014), McClean,
et al., New J. Phys. 18, 023023 (2016)

https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html
https://qiskit.org/documentation/nature/tutorials/01_electronic_structure.html


Variational Quantum Eigensolver

Ground state, |Ψ0〉, is fundamental in quantum chemistry and electronic

structure theory → used to calculate all sort of properties, like reaction rates and

reaction pathways

Our goal is to estimate: Ĥ |Ψ0〉 = E0 |Ψ0〉 ⇒ 〈Ψ0| Ĥ |Ψ0〉 = E0

Variational principle: an arbitrary state, |Ψ(θ)〉, the expectation value of Ĥ,

will be an upper bound to E0

〈Ψ(θ)| Ĥ |Ψ(θ)〉 = E(θ) ≥ E0

24



Variational Quantum Eigensolver

VQE: Efficiently prepare and encode |Ψ(θ)〉 with a suitable Ansatz, Û(θ), on

quantum hardware and measure the expectation values of “Pauli strings”, P̂i.

Reconstruct the energy and update the parameters (with some optimizer) on a

classical computer. Repeat until convergence of E(θ) = 〈Ψ(θ)| Ĥ |Ψ(θ)〉

Qiskit Tutorial, Example
25

https://lab.quantum-computing.ibm.com/user/6229bcb6568c4aa197b0fee7/lab/workspaces/auto-M/tree/qiskit-tutorials/qiskit/algorithms/02_vqe_convergence.ipynb
http://localhost:8888/lab/tree/Tutorial.ipynb


Ansatz for the quantum chemistry wavefunction

In general: An Ansatz is a quantum circuit with parametrized gates

Desired in Ansätze:

• Expressive – spans large and

correct portion of Hilbert space

• Small number of qubits

• Short-depth

→ Hardware efficient

Consideration due to noise and coherence times:

• Circuit depth

• Circuit connectivity

• Number of parameters

• Number of 2-qubit gates

• Gate types (Native to hardware?)

26



Ansatz for the quantum chemistry wavefunction

Hardware efficient Ansätze:

• Gates directly tailored for the quantum

device

• Spans a very large portion of Fock space

(inefficient)

• Large number of parameters, hard to

optimize, “barren plateaus”

|Ψ(θ)〉 =

d∏
i

[
ÛentÛrot({θi})

]
|ψinit〉

0

0

0

Ry(θ1)

Ry(θ2)

Ry(θ3)

Chemically/Physically motivated:

• Chemistry-inspired exponential Ansatz:

Unitary coupled cluster Ansatz

• Encode excitations of electrons between

different orbitals, |1100〉 → |0011〉

• Not hardware efficient, deep circuits

• Less parameters, easier to optimize

|Ψ(θ)〉 = eT̂ (θ)−T̂ †(θ) |ψHF 〉

27



Algorithms on quantum hardware

There is a variety of quantum algorithms for different kind of problems, most are

for future fault-tolerant quantum hardware with many qubits and deep circuits.

• Shor’s algorithm – Encryption

• Grover’s algorithm – Database

search

• Quantum Fourier Transformation

• Quantum Phase Estimation (QPE)

• Quantum Approximate

Optimization algorithm (QAOA)

• Quantum (Imaginary) Time

Evolution

• Variational Quantum

Eigensolver (VQE)

On near-term intermediate-scale quantum (NISQ) hardware (low number of qubits

and short circuits): hybrid quantum-classical algorithms

QPE: Kitaev, arXiv:quant-ph/9511026 (1995), Nielsen and Chuang, Quantum computation and quantum information (2001);



Further Topic

• Noise!

• Simulation – Noise-less / with noise model

• Calculations on real-hardware over the cloud

• Error mitigation, arXiv:2203.14756 (2022)

• Calculations/experiments on Chalmers devices

• Resource reduction, arXiv:2201.03049 (2022)

• Many more...

29

https://quantum-computing.ibm.com/services/resources?tab=systems
https://arxiv.org/abs/2203.14756
https://arxiv.org/abs/2201.03049


Advertisement – We are looking for Master Students!

Master’s Thesis 
 

Development of novel Quantum Algorithms for Near-term 
Quantum Devices for Chemical and Physical Problem Cases 

 
Motivation: 
The calculation of ground state energies of molecules is expected to 
be one of the first practical applications of near-term quantum 
computers. Some of the advantage that a quantum computer 
offers, when applied to computational physics and chemistry, 
comes from an efficient representation of a quantum mechanical 
wavefunction on a quantum computer. This is achieved by using 
quantum bits (qubits) instead of ordinary bits as the basic unit of 
information and computation.  
 
Current quantum hardware is however severely limited in the number of qubits and thus “state-of-the-art” 
calculations are only possible for very small problem cases. In our lab, we are developing a method to allow 
more accurate calculations requiring less quantum resources/qubits by incorporating part of the electronic 
correlation into the description of the problem at hand[1] and thus extending the applicability of current 
quantum computers to more realistic and interesting problem cases. 
 
Project Description: 
The goal of this master’s thesis is to take part in the development of this so-
called “transcorrelated (TC) method” and using it to perform highly accurate 
calculations in the field of computational chemistry and physics.  
 
The initial part of the project will be focused on getting to know the field of 
quantum computational quantum chemistry and physics through study of 
published literature, such as [2], as well as getting acquainted with the tools 
used in the field (primarily IBM’s open-source QISKit software solution will be 
used for this project [3]). 
The second part of the project will focus on performing calculations using the 
transcorrelated method in conjunction with the Quantum Imaginary Time 
Evolution algorithm[4], first by simulation of a quantum device and subsequently by performing real experiments 
on quantum hardware provided by Chalmers and IBM.  
 
As this work will be performed in collaboration with our industry partner, IBM Research Zürich, a stretch goal of 
this project is an incorporation of this method directly into QISKit. For this reason, upon available travel funds 
from Chalmers, research visits to the group of Dr. Ivano Tavernelli at IBM Research Zürich are a possibility.  
 
Prerequisites: 

a. Course in quantum mechanics and/or quantum information. 
b. Coding experience in Python or a similar language (C++ or Fortran is an advantage)  
c. Courses in physical chemistry and/or computational chemistry/physics, can be 

useful but are not mandatory. 
Supervisors: 
Martin Rahm (martin.rahm@chalmers.se), Werner Dobrautz (dobrautz@chalmers.se); 
Mårten Skogh (skoghm@chalmers.se) 
References: 
[1] Sokolov et al, arXiv preprint arXiv:2201.03049, (2022)  [2] Bauer et al., Chem. Rev. 120(22), 12685 (2020)  [3] Aleksandrowicz, et al., 
Qiskit: An Open-Source Framework for Quantum Computing (Zenodo, 2019). [4] McArdle et al. npj Quantum Inf 5, 75 (2019) 
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Time for questions!
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tij =

∫
φ∗i (r)

(
∇2

r −
∑
I

ZI
|RI − r|

)
φj(r)dr

Vijkl =

∫ ∫
φ∗i (r1)φ

∗
k(r2)φj(r1)φl(r2)

|r1 − r2|
dr1dr2

31



Application: High-TC Superconductors and the Hubbard Model

YBCO

Cu-O-Cu

Mapping to an effective lattice model:

Cu

O

O

Cu

O

O Cu

Cu

t

U

The Hubbard Hamiltonian

Ĥ = −t
∑
〈i,j〉,σ

(
c†i,σcj,σ + h.c.

)
+ U

∑
i

ni,↑ni,↓

Strong interaction ⇒ highly multiconfigurational

Hubbard, 1963; Kanamori, 1963; Gutzwiller; 1963; Anderson, 1987; Emery, 1987; Zhang and Rice, 1988; Bednorz and Müller, 1986



Effective Model – Solid State Physics

Not restricted to ab initio electronic structure theory – quantum chemistry

• Hubbard-like model

• Electron-phonon model

• Impurity model

• Heisenberg/spin model

33



Chemical reactions – high accuracy

In chemistry, it is important to calculate the energy of molecules within chemical

accuracy, which is required to predict reaction rates:

kBT ≈ 1 kcal/mol ≈ 0.043 eV 34



First Quantization

First Quantization → real-space grid necessary

Ĥ = −
∑
i

∇2
ri +

1

2

∑
i 6=j

1

|ri − rj |
−
∑
I,j

ZI
|RI − rj |

|Ψ〉 = |Ψ(r1, r2, . . . , rn)〉 , ri ∈ IR3

Ae e

rij

Rij

Wave-function encoding:

on a grid of 2n sites per dimension

Qubits required to represent

the wave function:

3n per particle
Kassal et al., Annu. Rev. Phys. Chem. 2011. 62:185 (2010)



Slater Determinants

• Simplest way to approximate wavefunctions is to express them as products

(Hartree-product) of single particle wavefunctions (orbitals):

Ψ(r1, r2, . . . , rN ) = φ1(r1)φ2(r2) · · ·φN (rN )

• But this wave function is not symmetric→ not suitable for fermionic wave functions

• Anti-symmetric property via Slater determinant (SD):

Ψ(r1, r2, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · φN (r1)

φ1(r2) φ2(r2) · · · φN (r2)
...

...
. . .

...

φ1(rN ) φ2(rN )
... φN (rN )

∣∣∣∣∣∣∣∣∣∣∣
• Exercise: Convince yourself of anti-symmetry of a two-particle SD: Ψ(r1, r2)
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