# Spin-pure Stochastic-CASSCF applied to iron-sulfur clusters

Werner Dobrautz 9th OpenMolcas Developers' e-Meeting 2021 July 1st, 2021





**MAX PLANCK INSTITUTE** FOR SOLID STATE RESEARCH

#### Motivation

- Full Configuration Interaction Quantum Monte Carlo
- Spin Symmetry via the Graphical Unitary Group Approach
- Results:  $Fe_2S_2$  and  $Fe_4S_4$  clusters
- Conclusion and Outlook

# Motivation

# **Electronic Structure Theory**

# Goals:

- *High accuracy ab initio* calculations for strongly correlated systems
- We want: accuracy, predictability and interpretability to compare with experiment
- Beyond HF & DFT:  $\Rightarrow$  Combine CASSCF with FCIQMC as CI-solver<sup>†</sup> for large active spaces

# Problems:

- small (near-degenerate) spin-gaps and spin-contamination problematic for convergence of projective techniques (like FCIQMC)
- no control and insight of total spin quantum number with Slater determinant formulation (hard to interpret)

## **Idea:** Formulate FCIQMC and sample RDMs in a spin-adapted basis\*

<sup>†</sup>Li Manni, Smart, Alavi, JCTC 12, 3, 1245 (2016); <sup>\*</sup>Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (submitted to JCTC)

# Problems for accurate description: Exponential scaling of Full Configuration Interaction

FCI  $\Rightarrow |\Psi\rangle = \sum_{I} c_{I} |D_{I}\rangle \Rightarrow$  exact solution in a given basis set

. . .



All possible excitations from HF determinant

Number of possible states for given number of electrons and orbitals

| #orbitals | #electrons | #states             |
|-----------|------------|---------------------|
| 2         | 2          | 4                   |
| 4         | 4          | 36                  |
| 8         | 8          | 4900                |
| 12        | 12         | $\sim 8\cdot 10^5$  |
| 16        | 16         | $\sim 16\cdot 10^6$ |
| 18        | 18         | $\sim 2\cdot 10^9$  |

Full Configuration Interaction Quantum Monte Carlo

#### Full Configuration Interaction Quantum Monte Carlo

• Projector MC method based on the **imaginary-time Schrödinger equation**, stochastically sampling FCI wavefunction. Formal integration leads to an iterable equation:

$$\frac{\partial |\Psi\rangle}{\partial \tau} = -\hat{H} |\Psi\rangle \quad \to \quad |\Psi_0\rangle \propto \lim_{\tau \to \infty} e^{-\tau \hat{H}} |\Phi\rangle$$

• First order Taylor expansion  $e^{-\Delta \tau \hat{H}} \approx 1 - \Delta \tau \hat{H}$  leads to the working equation:

$$c_i(\tau + \Delta \tau) = \underbrace{\left[1 - \Delta \tau H_{ii}\right]c_i(\tau)}_{\text{diagonal}} - \underbrace{\Delta \tau \sum_{j \neq i} H_{ij}c_j(\tau)}_{\text{off-diagonal}}$$

- Solved stochastically by the *population dynamics* of "walkers" in the discrete Slater determinant (SD) Hilbert space.
- Multireference method and highly accurate solutions for system sizes > (50e, 50o) possible. Booth, Thom, and Alavi, JCP, 131, 054106 (2009), Guther et al., JCP, 153, 034107 (2020)

# FCIQMC

Population dynamics of walkers governed by:

$$c_i(\tau + \Delta \tau) = \underbrace{\left[1 - \Delta \tau H_{ii}\right]c_i(\tau)}_{\text{death/cloning}} - \underbrace{\Delta \tau \sum_{j \neq i} H_{ij}c_j(\tau)}_{\text{spawning}}$$

Spawning step: 
$$|D_i\rangle \rightarrow |D_j\rangle$$
 with  $p_{gen} = \frac{\Delta \tau |H_{ij}|}{p(D_j|D_i)}$ 

 $\Psi(\tau)$ :



Need efficient  $H_{ij}$ matrix element calculation, excitation generation, and RDM sampling for excitation  $|D_i\rangle \rightarrow |D_j\rangle$  Spin Symmetry via the Graphical Unitary Group Approach Inherent to spin-preserving, non-relativistic Hamiltonians:

 $[\hat{H}, \hat{\mathbf{S}}^2] = 0$ 

often not directly imposed, due to impractical implementation.

**Benefits** of a spin-symmetry adapted basis:

- target specific spin-states (singlet, triplet,...)
- no spin-contamination
- reduce Hilbert space size!
- resolve (near-)degeneracies of different spin-sectors

**<u>Idea:</u>** Formulate FCIQMC in a spin-adapted basis<sup>†</sup>

#### The (Graphical) Unitary Group Approach

• **Spin-free** formulation of non-relativistic Hamiltonian:

$$\hat{H} = \sum_{ij}^{n} t_{ij} \, \hat{E}_{ij} + \frac{1}{2} \sum_{ijkl}^{n} V_{ijkl} \left( \hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} \right)$$

• Spin-preserving excitation operators:

$$\hat{E}_{ij} = \hat{c}^{\dagger}_{i\uparrow}\hat{c}_{j\uparrow} + \hat{c}^{\dagger}_{i\downarrow}\hat{c}_{j\downarrow}, \quad \text{with} \quad [\hat{E}_{ij}, \hat{\mathbf{S}}^2] = 0$$

- Same commutation relations as generators of the Unitary Group U(n)
- Gel'fand-Tsetlin (GT) basis: invariant and irreducible, same storage cost as SDs
- Efficient matrix element calculation and excitation generation entirely in CSFs via the Graphical Unitary Group Approach (GUGA)\*, without reference to SDs

Paldus, J. Chem. Phys. **61**, 5321 (1974); Gel'fand and Tsetlin, Doklady Akad. Nauk SSSR, **71**, 1017 (1950) \*Shavitt, Int. J. Quantum Chem., **12**, 131 (1977

# Spin-free RDMs with GUGA-FCIQMC

One- and two-body RDMs:

$$\rho_{ij} = \langle \Psi | \hat{E}_{ij} | \Psi \rangle = \sum_{\mu\nu} c_{\mu}^{(\mathrm{II})} c_{\nu}^{(\mathrm{II})} \langle \nu | \hat{E}_{ij} | \mu \rangle, \quad \Gamma_{ij,kl} = \frac{1}{2} \langle \Psi | \hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} | \Psi \rangle$$

Replica trick<sup>\*</sup>: two statistically independent simulations (I and II) for unbiased RDMs necessary! (Twice the computational cost)

• Sample  $\rho_{ij}$  and  $\Gamma_{ij,kl}$  in the random excitation process  $|\mu\rangle \rightarrow |\nu\rangle$ 



- Already for SDs: store 'parent' state  $|\mu\rangle$ , coefficient  $c_{\mu}$  and source (I,II) along  $|\nu\rangle$
- New for GUGA: store *coupling coefficient*  $\langle \nu | \hat{E}_{ij} | \mu \rangle$ , information of the excitation type and 'original' probability  $p(\mu \rightarrow \nu | i, j, k, l)$
- Moderate computational overhead and interfaced with  ${\tt OpenMolcas}^\dagger$

<sup>\*</sup>Overy, Booth, Blunt, Shepherd, Cleland, Alavi, JCP, 141, 244117 (2014); <sup>†</sup>Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (2020) (submitted to JCTC)

# **Results:** $Fe_2S_2$ and $Fe_4S_4$ clusters

# $[\mathbf{Fe}_2^{(\mathbf{III})}\mathbf{S}_2]^{2-}$ - Model System



- CAS(10,10): 10 iron valence 3d orbitals
- CAS(10,20): 10 iron valence 3d and 10 double-shell d' orbitals
- CAS(22,16): 10 iron valence 3d and 6 3p bridging sulfur orbital
- Largest considered active space here: <u>22 electrons in 26 orbital</u>, containing the 20 iron valence 3d and double-shell d' and the 6 3p orbitals of the bridging sulfurs

Li Manni, Dobrautz, Alavi, JCTC, **16**, 4, 2202 (2020); Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (submitted to JCTC)

# Importance of Localized and Ordered Orbitals



Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020)

#### Results: Iron-sulfur clusters – $Fe_2S_2$



#### Results: Iron-sulfur clusters $- Fe_2S_2$



Results: Iron-sulfur clusters  $- Fe_2S_2 - Local spin$ 



#### Results: Iron-sulfur clusters – $Fe_2S_2$ – Spin-spin correlation

Spin-spin correlation between irons:  $\langle \sum_{i \in \text{Fe}_A} \hat{\mathbf{S}}_i \cdot \sum_{j \in \text{Fe}_B} \hat{\mathbf{S}}_j \rangle$ 



#### Results: Iron-sulfur clusters – $Fe_2S_2$ – Wavefunction character

| Singlet state                 |            |            |  |
|-------------------------------|------------|------------|--|
| Active space                  | (22e, 26o) |            |  |
|                               | CASCI      | CASSCF     |  |
| Ref. weight $[\%]$            | 74.4       | 46.1       |  |
| MMCT d $\rightarrow$ d [%]    | 6.9        | 12.9       |  |
| Radial $d \rightarrow d'[\%]$ | 1.5        | <b>2.1</b> |  |
| LMCT $[\%]$                   | 13.4       | 27.9       |  |
| non-Hund $[\%]$               | 1.2        | 3.7        |  |

C' 1.4.4.4



## Results: Iron-sulfur clusters – $Fe_4S_4$ – CASCI

Six lowest singlet states resolved within  $\approx 3$  mH. Low spin state with 20 open shell orbitals. Calculations up to (44e,32o) active spaces



(20,20) active space

Reveals magnetic coupling of ground- and excited states

G. Li Manni, W. Dobrautz, N. Bogdanov, K. Guther, A. Alavi, JCP A, 2021, accepted

## Results: Iron-sulfur clusters – $Fe_4S_4$ – CASSCF

- (20e,20o) active space of Fe<sub>4</sub>S<sub>4</sub> model system
- Reveals necessary higher order terms in mapping to spin-model (biquadratic Heisenberg)

| Method | $J^{(')} \mid \mathrm{mH}$                    | $K\mid \mathrm{mH}$ |
|--------|-----------------------------------------------|---------------------|
| CASCI  | 249.9<br>259.2                                | -0.11               |
| CASSCF | $\begin{array}{c} 410.1 \\ 470.0 \end{array}$ | -2.61               |



Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (submitted to JCTC)

# **Conclusion and Outlook**

# Conclusion and Summary

- FCIQMC is an accurate and efficient stochastic multireference method for **large active spaces**
- Efficient spin-adapted implementation via the GUGA
- Enables to **target** specific spin states, **reduces** the Hilbert space size and **removes** spin contamination
- Orbital localization and reordering scheme causes wave function **compression**
- Spin-adapted Stochastic-CASSCF and properties via density matrices interfaced with OpenMolcas
- Spin-adapted CASSCF reveals need for **higher order** Heisenberg terms for FeS systems
- Allows spin-adapted state-specific / state-averaged / excited states CASSCF calculations for **large actice spaces**

# Acknowledgments



Ali Alavi

Giovanni Li Manni

Oskar Weser

Nikolay Bogdanov



# **MAX PLANCK INSTITUTE** FOR SOLID STATE RESEARCH

# Thank you for your attention!

Stochastic-CASSCF for SDs implemented by G. Li Manni and S. Smart $^{\dagger}$ 

Additional input for a stochastic GUGA-FCIQMC CASSCF calculation: fciqmc.input: molcas.input:

#### SYSTEM

nonuniformrandexcits pchb guga 2S ENDSYS LOGGING print-molcas-rdms ENDLOG

Produces DMAT, PSMAT, PAMAT and NEWCYCLE files containing the **spin-free** RDMs and the RDM energy used by Molcas &RASSCF

neci

guga

Produces the **\$Project.FciDmp** file containing the new molecular integrals used by our FCIQMC code NECI, with output:

Run spin-free GUGA NECI externally. Get the ASCII formatted FCIDUMP: cp \$MOLCAS\_RUN\_DIR/\$Poject.FciDmp \$NECI\_RUN\_DIR

When finished do: cp PSMAT PAMAT DMAT NEWCYCLE \$MOLCAS\_RUN\_DIR

<sup>†</sup>Li Manni, Smart, Alavi, JCTC **12**, 3, 1245 (2016)

CSF given by step-vector  $|\mu\rangle = |d_1, d_2, \dots, d_n\rangle$ .

For each *spatial* orbital (i) **step-value**  $d_i$  encodes:

- $\Delta N_i$ : change in total electron number
- $\Delta S_i$ : change in total spin with  $S \ge 0$
- 2 bit per spatial orbital, like SD
- Can be represented graphically

4 ways of coupling a orbital:  $\Delta N_i$  $\Delta S_i$  $d_i$ 0 0 0 1/21 u d 1 -1/2 $\mathbf{2}$ 20



Paldus, J. Chem. Phys. 61, 5321 (1974); Gel'fand and Tsetlin, Doklady Akad. Nauk SSSR, 71, 1017 (1950)

#### Matrix Elements via the Graphical UGA

Calculate matrix elements with the **Graphical** UGA:

$$\langle \nu | \hat{H} | \mu \rangle = \sum_{ij}^{n} t_{ij} \langle \nu | \hat{E}_{ij} | \mu \rangle + \frac{1}{2} \sum_{ijkl}^{n} V_{ijkl} \langle \nu | \hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} | \mu \rangle$$

Matrix elements only depend on **loop** enclosed by CSFs, and have a **product** form

$$\langle \mu' | \hat{E}_{ij} | \mu \rangle = \prod_{k=i}^{j} W(d'_k, d_k, S_k)$$



I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977)

# Excitations via the Graphical UGA

 $\hat{E}_{ij}$  moves electron from j to i with all symmetry allowed spin-recouplings, opposed to SD more than one excitation possible:

$$\hat{E}_{ij} \left| \mu \right\rangle = \sum_{n} C_n \left| \mu'_n \right\rangle \qquad \hat{E}_i$$





# Excitations via the Graphical UGA

 $\hat{E}_{ij}$  moves electron from j to i with all symmetry allowed spin-recouplings, opposed to SD more than one excitation possible:

1 1

$$\hat{E}_{ij} |\mu\rangle = \sum_{n} C_{n} |\mu'_{n}\rangle \qquad \qquad \hat{E}_{ij} |\mu\rangle \xrightarrow{|\mu_{1}\rangle} |\mu'_{2}\rangle \\ |\mu'_{3}\rangle$$

In FCIQMC we only need **one** connected state!  $\Rightarrow$  Loop over  $i \rightarrow j$ : select one excitation randomly through **branching tree** and calculate matrix element on the fly!



I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977)

# The Branching Tree

- Branching option at every singly occupied orbital in excitation range  $i \to j$
- Randomly choose excitation and calculate matrix element **on-the-fly**



#### **CASSCF** Effect on orbitals



# Motivation: Potential Problems of a Slater determinant formulation:



- small (near-degenerate) spin-gaps and spin-contamination problematic for convergence of projective techniques
- no control and insight of total spin quantum number with Slater determinants (hard to interpret)
- No access to low-spin excited states for systems with a high-spin groundstate: -Restricting  $m_s$  converges to high-spin GS
- Open-shell low-spin excited state: multi-reference character of <sup>2</sup>F state problematic for single-reference methods

# Spin-free RDMs with GUGA-FCIQMC cont.

• Coupling coefficients  $\langle \mu' | \hat{E}_{ij} | \mu \rangle = \prod_{k=i}^{j} W(d'_k, d_k, S_k)$ :

More complicated as for SDs, but already calculated **on-the-fly** in *excitation generation* 

• Additional information on excitation type:

*Excitation identification*, like the involved spatial indices (i, j, k, l), more costly as for SDs (but already available)

• <u>'original'</u> probability  $p(\mu \rightarrow \nu | i, j, k, l)$ :

Different exchange type double excitations  $\hat{E}_{ij}\hat{E}_{ji}$  can lead to same  $|\mu\rangle \rightarrow |\nu\rangle$ . Needs to be considered for unique total generation probability, but for RDM sampling we need to unbias this

⇒ We need to communicate three additional 64bit integers. Communicating accumulated data every 1000 iterations only ≈10% increase in time per iteration!
Interfaced with OpenMolcas Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (2020) (submitted to JCTC)

