Spin-pure Stochastic-CASSCF Method Applied to Iron-Sulfur Clusters

Werner Dobrautz European Materials Research Society Fall Meeting 2021

September 20th, 2021

MAX PLANCK INSTITUTE FOR SOLID STATE RESEARCH

Motivation

- Methods: CASSCF and FCIQMC
- Spin Symmetry via the Graphical Unitary Group Approach
- Results: Fe_2S_2 and Fe_4S_4 clusters
- Conclusion and Outlook

Motivation

(Polynuclear) Transition Metal Compounds

Challenging systems for quantum chemical investigations

YBCO^{*}: Unconventional high- T_c superconductivity

Iron-Sulfur clusters: electron transfer proteins

 ${\bf FeMoCo^{\dagger}}:$ primary cofactor of nitrogenase

 Mn_4O_5Ca in Photosystem II[†]: oxygen-evolving complex in photosynthesis process

Images from: *commons.wikimedia.org, [†]G. Li Manni

Electronic Structure Theory

Goals:

- *High accuracy ab initio* calculations for strongly correlated systems
- We want: accuracy, predictability and interpretability to compare with experiment \rightarrow groundstate energy and wavefunction
- Beyond mean-field HF & DFT: \Rightarrow Combine embedding methods (CASSCF) with highly accurate *ab initio* CI-solver[†] (FCIQMC) for large active spaces

Problems: Narrow and dense spin spectrum

- small (near-degenerate) spin-gaps and spin-contamination problematic for convergence of projective techniques (like FCIQMC)
- no control and insight of total spin quantum number with Slater determinant formulation (hard to interpret)

Formulate FCIQMC in a spin-adapted basis $\!\!\!\!^*$ and perform spin-pure CASSCF

[†]Li Manni, Smart, Alavi, JCTC 12, 3, 1245 (2016); ^{*}Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (submitted to JCTC)

Methods: CASSCF and FCIQMC

Complete active space self-consistent field method (CASSCF)

- Well-established **embedding method** in quantum chemistry for the treatment of strongly correlated electron systems
 - **Active space** consisting of the most important orbitals and electrons treated exactly. Configuration interaction solver (**FCIQMC**) yields ground state energy and wavefunction $|\Psi_0\rangle$
- Effect of the **environment** (Inactive/Virtual space) accounted for at the mean-field level by orbital rotations.
- One- and two-body reduced density matrices in the active space are needed!

$$\rho_{ij}^{\sigma} = \langle \Psi_0 | a_{i\sigma}^{\dagger} a_{j\sigma} | \Psi_0 \rangle$$

Roos, Taylor, Sigbahn, Chem. Phys., 48, 2, 157 (1980)

Problems for accurate description: Exponential scaling of Full Configuration Interaction

FCI $\Rightarrow |\Psi\rangle = \sum_{I} c_{I} |D_{I}\rangle \Rightarrow$ exact solution in a given basis set

. . .

All possible excitations from HF determinant

Number of possible states for given number of electrons and orbitals

#orbitals	#electrons	#states
2	2	4
4	4	36
8	8	4900
12	12	$\sim 8\cdot 10^5$
16	16	$\sim 16\cdot 10^6$
18	18	$\sim 2\cdot 10^9$

Full Configuration Interaction Quantum Monte Carlo

• *Projector MC method* based on the **imaginary-time Schrödinger equation**, stochastically sampling FCI wavefunction. Integration leads to an iterable equation:

$$\frac{\partial \left|\Psi\right\rangle}{\partial \tau} = -\hat{H} \left|\Psi\right\rangle \quad \rightarrow \quad \left|\Psi_{0}\right\rangle \propto \lim_{\tau \to \infty} \mathrm{e}^{-\tau \hat{H}} \left|\Phi\right\rangle$$

• First order Taylor expansion $e^{-\Delta \tau \hat{H}} \approx 1 - \Delta \tau \hat{H}$ leads to the working equation:

$$c_i(\tau + \Delta \tau) = [1 - \Delta \tau H_{ii}] c_i(\tau) - \Delta \tau \sum_{j \neq i} H_{ij} c_j(\tau)$$

- Solved stochastically by the *population dynamics* of **"walkers"** in the discrete Slater determinant (SD) Hilbert space.
- Multireference method and highly accurate solutions for system sizes > (50*e*, 50*o*) possible.

Booth, Thom, and Alavi, JCP, 131, 054106 (2009), Guther et al., JCP, 153, 034107 (2020)

Spin Symmetry via the Graphical Unitary Group Approach Inherent to spin-preserving, non-relativistic Hamiltonians:

 $[\hat{H}, \hat{\mathbf{S}}^2] = 0$

often not directly imposed, due to *impractical implementation*.

Benefits of a spin-symmetry adapted basis:

- target specific spin-states (singlet, triplet,...)
- no spin-contamination

- reduce Hilbert space size!
- resolve (near-)degeneracies of different spin-sectors

Efficient spin-adapted formulation of FCIQMC[†] possible with the graphical unitary group approach (GUGA)[‡] \rightarrow spin-pure RDM sampling and CASSCF^{*}

[†]Dobrautz, Smart and Alavi, JCP, **151**, 094104 (2019); [‡]Paldus, J. Chem. Phys. **61**, 5321 (1974) + Shavitt, Int. J. Quantum Chem., **12**, 131 (1977) *Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (2020) (submitted and accepted by JCTC)

Results: Fe_2S_2 and Fe_4S_4 clusters

$[\mathbf{Fe}_2^{(\mathbf{III})}\mathbf{S}_2]^{2-}$ - Model System

- CAS(10,10): 10 iron valence 3d orbitals
- CAS(10,20): 10 iron valence 3d and 10 double-shell d' orbitals
- CAS(22,16): 10 iron valence 3d and 6 3p bridging sulfur orbital
- Largest considered active space here: <u>22 electrons in 26 orbital</u>, containing the 20 iron valence 3d and double-shell d' and the 6 3p orbitals of the bridging sulfurs

Li Manni, Dobrautz, Alavi, JCTC, **16**, 4, 2202 (2020); Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (submitted to JCTC)

Importance of Localized and Ordered Orbitals

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020)

Results: Iron-sulfur cluster $\overline{s - Fe_2S_{20}}$

CASSCF: J = 2.45 mH

8

Results: Iron-sulfur clusters – Fe_2S_2 – Spin-spin correlation

Properties via RDMs: Spin-spin correlation between irons: $\langle \sum_{i \in \text{Fe}_A} \hat{\mathbf{S}}_i \cdot \sum_{j \in \text{Fe}_B} \hat{\mathbf{S}}_j \rangle$

Results: Iron-sulfur clusters – Fe_4S_4 – CASCI

Six lowest singlet states resolved within ≈ 3 mH. Low spin state with 20 open shell orbitals. Calculations up to (44e,32o) active spaces

Reveals magnetic coupling of ground- and excited states

G. Li Manni, W. Dobrautz, N. Bogdanov, K. Guther, A. Alavi, JCP A, 125, 22 4727 (2021)

(20,20) active space

Results: Iron-sulfur clusters – Fe_4S_4 – CASSCF

- (20e, 20o) active space of Fe_4S_4 model system
- Reveals necessary higher order terms in mapping to spin-model (biquadratic Heisenberg)

Method	$J^{(\prime)} \mid \mathrm{mH}$	$K\mid \mathrm{mH}$
CASCI	$249.9 \\ 259.2$	-0.11
CASSCF	$410.1 \\ 470.0$	-2.61

Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (submitted and accepted JCTC)

Conclusion and Outlook

Conclusion and Summary

- FCIQMC is an accurate and efficient stochastic multireference method for large active spaces
- Efficient spin-adapted implementation via the GUGA
- Enables to **target** specific spin states, **reduces** the Hilbert space size and **removes** spin contamination
- Orbital localization and reordering scheme causes wave function **compression**
- \bullet ${\bf Spin-adapted}$ ${\bf Stochastic-CASSCF}$ and properties via density matrices
- Spin-adapted CASSCF reveals need for **higher order** Heisenberg terms for FeS systems
- Allows spin-adapted state-specific / state-averaged / excited states CASSCF calculations for **large actice spaces**
- Allows the study of strongly correlated polynuclear transition metal compounds

Acknowledgments

Ali Alavi

Giovanni Li Manni

Oskar Weser

Nikolay A. Bogdanov

MAX PLANCK INSTITUTE FOR SOLID STATE RESEARCH

Thank you for your attention!

Stochastic-CASSCF for SDs implemented by G. Li Manni and S. Smart †

Additional input for a stochastic GUGA-FCIQMC CASSCF calculation: fciqmc.input: molcas.input:

SYSTEM

nonuniformrandexcits pchb guga 2S ENDSYS LOGGING print-molcas-rdms ENDLOG

Produces DMAT, PSMAT, PAMAT and NEWCYCLE files containing the **spin-free** RDMs and the RDM energy used by Molcas &RASSCF

neci

guga

Produces the **\$Project.FciDmp** file containing the new molecular integrals used by our FCIQMC code NECI, with output:

Run spin-free GUGA NECI externally. Get the ASCII formatted FCIDUMP: cp \$MOLCAS_RUN_DIR/\$Poject.FciDmp \$NECI_RUN_DIR

When finished do: cp PSMAT PAMAT DMAT NEWCYCLE \$MOLCAS_RUN_DIR

[†]Li Manni, Smart, Alavi, JCTC **12**, 3, 1245 (2016)

CSF given by step-vector $|\mu\rangle = |d_1, d_2, \dots, d_n\rangle$.

For each *spatial* orbital (i) **step-value** d_i encodes:

- ΔN_i : change in total electron number
- ΔS_i : change in total spin with $S \ge 0$
- 2 bit per spatial orbital, like SD
- Can be represented graphically

4 ways of coupling a orbital: ΔN_i ΔS_i d_i 0 0 0 1/21 u d 1 -1/2 $\mathbf{2}$ 20

Paldus, J. Chem. Phys. 61, 5321 (1974); Gel'fand and Tsetlin, Doklady Akad. Nauk SSSR, 71, 1017 (1950)

Matrix Elements via the Graphical UGA

Calculate matrix elements with the **Graphical** UGA:

$$\langle \nu | \hat{H} | \mu \rangle = \sum_{ij}^{n} t_{ij} \langle \nu | \hat{E}_{ij} | \mu \rangle + \frac{1}{2} \sum_{ijkl}^{n} V_{ijkl} \langle \nu | \hat{E}_{ij} \hat{E}_{kl} - \delta_{jk} \hat{E}_{il} | \mu \rangle$$

Matrix elements only depend on **loop** enclosed by CSFs, and have a **product** form

$$\langle \mu' | \hat{E}_{ij} | \mu \rangle = \prod_{k=i}^{j} W(d'_k, d_k, S_k)$$

I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977)

Excitations via the Graphical UGA

 \hat{E}_{ij} moves electron from j to i with all symmetry allowed spin-recouplings, opposed to SD more than one excitation possible:

$$\hat{E}_{ij} \left| \mu \right\rangle = \sum_{n} C_n \left| \mu'_n \right\rangle \qquad \hat{E}_i$$

Excitations via the Graphical UGA

 \hat{E}_{ij} moves electron from j to i with all symmetry allowed spin-recouplings, opposed to SD more than one excitation possible:

1 1

$$\hat{E}_{ij} |\mu\rangle = \sum_{n} C_n |\mu'_n\rangle \qquad \qquad \hat{E}_{ij} |\mu\rangle \xrightarrow{|\mu_1\rangle} |\mu'_2\rangle \\ |\mu'_3\rangle$$

In FCIQMC we only need **one** connected state! \Rightarrow Loop over $i \rightarrow j$: select one excitation randomly through **branching tree** and calculate matrix element on the fly!

I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977)

The Branching Tree

- Branching option at every singly occupied orbital in excitation range $i \to j$
- Randomly choose excitation and calculate matrix element **on-the-fly**

CASSCF Effect on orbitals

Motivation: Potential Problems of a Slater determinant formulation:

- small (near-degenerate) spin-gaps and spin-contamination problematic for convergence of projective techniques
- no control and insight of total spin quantum number with Slater determinants (hard to interpret)
- No access to low-spin excited states for systems with a high-spin groundstate: -Restricting m_s converges to high-spin GS
- Open-shell low-spin excited state: multi-reference character of ²F state problematic for single-reference methods

Spin-free RDMs with GUGA-FCIQMC cont.

• Coupling coefficients $\langle \mu' | \hat{E}_{ij} | \mu \rangle = \prod_{k=i}^{j} W(d'_k, d_k, S_k)$:

More complicated as for SDs, but already calculated **on-the-fly** in *excitation generation*

• Additional information on excitation type:

Excitation identification, like the involved spatial indices (i, j, k, l), more costly as for SDs (but already available)

• <u>'original'</u> probability $p(\mu \rightarrow \nu | i, j, k, l)$:

Different exchange type double excitations $\hat{E}_{ij}\hat{E}_{ji}$ can lead to same $|\mu\rangle \rightarrow |\nu\rangle$. Needs to be considered for unique total generation probability, but for RDM sampling we need to unbias this

⇒ We need to communicate three additional 64bit integers. Communicating accumulated data every 1000 iterations only ≈10% increase in time per iteration!
Interfaced with OpenMolcas Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (2020) (submitted to JCTC)

