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Motivation



(Polynuclear) Transition Metal Compounds

Challenging systems for quantum chemical investigations

YBCO∗: Unconventional
high-Tc superconductivity

Iron-Sulfur clusters:
electron transfer proteins

Mn4O5Ca in Photosystem
II†: oxygen-evolving complex
in photosynthesis process

FeMoCo†: primary cofactor
of nitrogenase

Images from: ∗commons.wikimedia.org, †G. Li Manni



Electronic Structure Theory

Goals:

• High accuracy ab initio calculations for strongly correlated systems

• We want: accuracy, predictability and interpretability to compare with

experiment → groundstate energy and wavefunction

• Beyond mean-field HF & DFT: ⇒ Combine embedding methods (CASSCF)

with highly accurate ab initio CI-solver† (FCIQMC) for large active spaces

Problems: Narrow and dense spin spectrum

• small (near-degenerate) spin-gaps and spin-contamination problematic for

convergence of projective techniques (like FCIQMC)

• no control and insight of total spin quantum number with Slater determinant

formulation (hard to interpret)

Formulate FCIQMC in a spin-adapted basis∗ and perform spin-pure CASSCF

†Li Manni, Smart, Alavi, JCTC 12, 3, 1245 (2016); ∗Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (submitted to JCTC)



Methods: CASSCF and FCIQMC



Complete active space self-consistent field method (CASSCF)
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• Well-established embedding method in

quantum chemistry for the treatment of strongly

correlated electron systems

• Active space consisting of the most important

orbitals and electrons treated exactly.

Configuration interaction solver (FCIQMC)

yields ground state energy and wavefunction |Ψ0〉

• Effect of the environment (Inactive/Virtual

space) accounted for at the mean-field level by

orbital rotations.

• One- and two-body reduced density

matrices in the active space are needed!

ρσij = 〈Ψ0|a†iσajσ|Ψ0〉
Roos, Taylor, Sigbahn, Chem. Phys., 48, 2, 157 (1980)



Problems for accurate description:

Exponential scaling of Full Configuration Interaction

FCI ⇒ |Ψ〉 =
∑

I cI |DI〉 ⇒ exact solution in a given basis set

|ΦHF 〉
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ijk〉

· · ·

All possible excitations from HF determinant

Number of possible states for given number
of electrons and orbitals

#orbitals #electrons #states

2 2 4

4 4 36

8 8 4900

12 12 ∼ 8 · 105

16 16 ∼ 16 · 106

18 18 ∼ 2 · 109
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Full Configuration Interaction Quantum Monte Carlo

• Projector MC method based on the imaginary-time Schrödinger equation,

stochastically sampling FCI wavefunction. Integration leads to an iterable equation:

∂ |Ψ〉
∂τ

= −Ĥ |Ψ〉 → |Ψ0〉 ∝ lim
τ→∞

e−τĤ |Φ〉

• First order Taylor expansion e−∆τĤ ≈ 1−∆τĤ leads to the working equation:

ci(τ + ∆τ) = [1−∆τHii] ci(τ)−∆τ
∑
j 6=i

Hijcj(τ)

• Solved stochastically by the population dynamics

of “walkers” in the discrete Slater determinant

(SD) Hilbert space.

• Multireference method and highly accurate

solutions for system sizes > (50e, 50o) possible.

Ψ(τ):

Di

Dk

Dj

Dl

−∆τĤ

∆τĤij

Booth, Thom, and Alavi, JCP, 131, 054106 (2009), Guther et al., JCP, 153, 034107 (2020)



Spin Symmetry via the Graphical

Unitary Group Approach



Spin Symmetry

Inherent to spin-preserving, non-relativistic Hamiltonians:

[Ĥ, Ŝ2] = 0

often not directly imposed, due to impractical implementation.

Benefits of a spin-symmetry adapted basis:

• target specific spin-states (singlet,

triplet,. . . )

• no spin-contamination

• reduce Hilbert space size!

• resolve (near-)degeneracies of

different spin-sectors

Efficient spin-adapted formulation of FCIQMC† possible with the graphical uni-

tary group approach (GUGA)‡ → spin-pure RDM sampling and CASSCF∗

†Dobrautz, Smart and Alavi, JCP, 151, 094104 (2019); ‡Paldus, J. Chem. Phys. 61, 5321 (1974) + Shavitt, Int. J. Quantum Chem., 12, 131
(1977) ∗Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (2020) (submitted and accepted by JCTC)



Results: Fe2S2 and Fe4S4 clusters



[Fe
(III)
2 S2]

2− - Model System

• CAS(10,10): 10 iron valence 3d orbitals

• CAS(10,20): 10 iron valence 3d and 10

double-shell d’ orbitals

• CAS(22,16): 10 iron valence 3d and 6 3p

bridging sulfur orbital

• Largest considered active space here:

22 electrons in 26 orbital, containing the 20 iron

valence 3d and double-shell d’ and the 6 3p

orbitals of the bridging sulfurs

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020); Dobrautz, Weser, Bogdanov, Alavi, Li Manni,

arXiv:2106.07775 (submitted to JCTC) 6



Importance of Localized and Ordered Orbitals

  Dense wave function Sparse wave function

Wave function compression 
by orbital representation 

and re-ordering 

Li Manni, Dobrautz, Alavi, JCTC, 16, 4, 2202 (2020) 7



Results: Iron-sulfur clusters – Fe2S2
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CASSCF: J ′ = 2.70 mH and K = 0.054 mH 8



Results: Iron-sulfur clusters – Fe2S2 – Spin-spin correlation

Properties via RDMs: Spin-spin correlation between irons: 〈∑i∈FeA
Ŝi ·

∑
j∈FeB

Ŝj〉
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Results: Iron-sulfur clusters – Fe4S4 – CASCI

Six lowest singlet states resolved within ≈ 3 mH. Low spin state with 20 open shell

orbitals. Calculations up to (44e,32o) active spaces
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G. Li Manni, W. Dobrautz, N. Bogdanov, K. Guther, A. Alavi, JCP A, 125, 22 4727 (2021)



Results: Iron-sulfur clusters – Fe4S4 – CASSCF

• (20e,20o) active space of Fe4S4 model system

• Reveals necessary higher order terms in

mapping to spin-model (biquadratic

Heisenberg)

Method J (′) | mH K | mH
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249.9 —

259.2 -0.11
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Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (submitted and accepted JCTC) 11



Conclusion and Outlook



Conclusion and Summary

• FCIQMC is an accurate and efficient stochastic multireference method for

large active spaces

• Efficient spin-adapted implementation via the GUGA

• Enables to target specific spin states, reduces the Hilbert space size and

removes spin contamination

• Orbital localization and reordering scheme causes wave function compression

• Spin-adapted Stochastic-CASSCF and properties via density matrices

• Spin-adapted CASSCF reveals need for higher order Heisenberg terms for

FeS systems

• Allows spin-adapted state-specific / state-averaged / excited states CASSCF

calculations for large actice spaces

• Allows the study of strongly correlated polynuclear transition metal

compounds
12
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Integration with OpenMolcas

Stochastic-CASSCF for SDs implemented by G. Li Manni and S. Smart†

Additional input for a stochastic GUGA-FCIQMC CASSCF calculation:

fciqmc.input:

SYSTEM

nonuni formrandexc i t s pchb

guga 2S

ENDSYS

LOGGING

print−molcas−rdms

ENDLOG

Produces DMAT, PSMAT, PAMAT and NEWCYCLE

files containing the spin-free RDMs and the

RDM energy used by Molcas

molcas.input:

&RASSCF

nec i

guga

Produces the $Project.FciDmp file containing the
new molecular integrals used by our FCIQMC code
NECI, with output:

Run spin−f r e e GUGA NECI ex t e r na l l y .

Get the ASCII formatted FCIDUMP:

cp $MOLCAS RUN DIR/ $Poject . FciDmp $NECI RUN DIR

When f i n i s h e d do :

cp PSMAT PAMAT DMAT NEWCYCLE $MOLCAS RUN DIR

†Li Manni, Smart, Alavi, JCTC 12, 3, 1245 (2016)



The Gel’fand-Tsetlin Basis

CSF given by step-vector |µ〉 = |d1, d2, . . . , dn〉.

For each spatial orbital (i) step-value di

encodes:

• ∆Ni : change in total electron

number

• ∆Si : change in total spin with S ≥ 0

• 2 bit per spatial orbital, like SD

• Can be represented graphically

4 ways of coupling a orbital:

di ∆Ni ∆Si

0 0 0

u 1 1/2

d 1 −1/2

2 2 0

|µ〉

〈ν|

i

j

u

0

2

d

2

0

2

0

Paldus, J. Chem. Phys. 61, 5321 (1974); Gel’fand and Tsetlin, Doklady Akad. Nauk SSSR, 71, 1017 (1950)



Matrix Elements via the Graphical UGA

Calculate matrix elements with the Graphical UGA:

〈ν| Ĥ |µ〉 =

n∑
ij

tij 〈ν| Êij |µ〉+
1

2

n∑
ijkl

Vijkl 〈ν| ÊijÊkl − δjkÊil |µ〉

Matrix elements only depend on loop enclosed by CSFs, and

have a product form

〈µ′|Êij |µ〉 =

j∏
k=i

W (d′k, dk, Sk)

|µ〉

〈ν|

i

j

u

0

2

d

2

0

2

0

I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977)



Excitations via the Graphical UGA

Êij moves electron from j to i with all symmetry allowed spin-recouplings,

opposed to SD more than one excitation possible:

Êij |µ〉 =
∑
n

Cn |µ′n〉 Êij |µ〉 |µ′2〉
|µ′1〉

|µ′3〉

|µ〉

〈ν| i
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d

u

0

0

I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977)



Excitations via the Graphical UGA

Êij moves electron from j to i with all symmetry allowed spin-recouplings,

opposed to SD more than one excitation possible:

Êij |µ〉 =
∑
n

Cn |µ′n〉 Êij |µ〉 |µ′2〉
|µ′1〉

|µ′3〉

|µ〉

〈ν| i

j

u

0

0

u

d

0

u

u

d

u

0

0

In FCIQMC we only need one connected state!

⇒ Loop over i→ j : select one excitation randomly

through branching tree and calculate matrix element on

the fly!

Êij |µ〉 |µ′2〉
|µ′1〉

|µ′3〉
I. Shavitt, Int. J. Quantum Chem., 12, 131 (1977)



The Branching Tree

• Branching option at every singly occupied orbital in excitation range i→ j

• Randomly choose excitation and calculate matrix element on-the-fly
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CASSCF Effect on orbitals

ROHF:

CASSCF:

Difference:



Motivation: Potential Problems of a Slater determinant formulation:

4s

3d

4s

3d2F:

4F:

4F 3d74s2

4F 3d84s

2F 3d84s

4P 3d74s2

E

Cobalt atom

• small (near-degenerate) spin-gaps and spin-contamination

problematic for convergence of projective techniques

• no control and insight of total spin quantum number with

Slater determinants (hard to interpret)

• No access to low-spin excited states for systems with a

high-spin groundstate:

-Restricting ms converges to high-spin GS

• Open-shell low-spin excited state:

multi-reference character of 2F state problematic for

single-reference methods



Spin-free RDMs with GUGA-FCIQMC cont.

• Coupling coefficients 〈µ′|Êij |µ〉 =
∏j
k=iW (d′k, dk, Sk):

More complicated as for SDs, but already calculated on-the-fly in

excitation generation

• Additional information on excitation type:

Excitation identification, like the involved spatial indices (i, j, k, l),

more costly as for SDs (but already available)

• ’original’ probability p(µ→ ν|i, j, k, l):

Different exchange type double excitations ÊijÊji can lead to same

|µ〉 → |ν〉. Needs to be considered for unique total generation

probability, but for RDM sampling we need to unbias this

|µ〉

〈ν|

i

j

u

0

2

d

2

0

2

0

|ν〉 : |uududududu〉

|µ〉 : |uuudududdu〉
(i, j) :

(i′, j′) :

⇒ We need to communicate three additional 64bit integers. Communicating

accumulated data every 1000 iterations only ≈10% increase in time per iteration!

Interfaced with OpenMolcas
Dobrautz, Weser, Bogdanov, Alavi, Li Manni, arXiv:2106.07775 (2020) (submitted to JCTC)
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