Efficient Implementation of SU(2) Symmetry

Using the Unitary Group in FCIQMC
W. Dobrautz ${ }^{\dagger}$, Simon D. Smart and Ali Alavi ${ }^{\ddagger}$

Max Planck Institute for Solid State Research
email: ${ }^{\dagger}$ werner.dobrautz@gmail.com, ${ }^{\ddagger}$ A.Alavi@fkf.mpg.de

Introduction and Goals

- Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm ${ }^{1}$ is a projector QMC method
- Application of $e^{-\tau H}$ yields the ground state of a system in the long-time limit
- Originally formulated in the full anti-symmetric space of Slater Determinants
- Easy usage of translational and lattice symmetries, but until now no application of $\operatorname{SU}(2)$ spin symmetry Goal: Formulation in \hat{S}^{2} eigenfunctions via the Graphical Unitary Group Approach (GUGA)

FCIQMC

Projector QMC method in discrete, anti-symmetrized space of Slater Determinants based on the imaginarytime Schrödinger equation:

$$
\left|\Psi_{0}\right\rangle=\lim _{\tau \rightarrow \infty} \mathrm{e}^{-\tau\left(H-E_{0}\right)}\left|\Psi_{T}\right\rangle
$$

Sample wave function coefficients of $|\Psi\rangle=\sum c_{i}\left|D_{i}\right\rangle$ by stochastically evolving an ensemble of N_{w} signed walkers in exponentially large Hilbert space.
Walker population dynamics governed by:

$$
c_{i}^{(n+1)}=\underbrace{\left[1-\tau\left(H_{i i}-E_{S}\right)\right] c_{i}^{(n)}}_{\text {death/cloning }}-\underbrace{\tau \sum_{j \neq i} H_{i j} c_{j}^{(n)}}_{\text {spawning }}
$$

Three algorithmic steps:

1. Spawn progeny with probability: $\tau\left|H_{i j}\right|$
2. Death or clone with probability: $\tau\left(H_{i i}-E_{S}\right)$
3. Annihilate oppositely signed walkers on same determinant

Annihilation step crucial to converge to correct fermionic ground state solution. Energy shift E_{S} tuned to ensure constant walker population gives estimate for ground state energy E_{0}. Initiator approximation ${ }^{2}$ ensures sign coherent spawning events.

Abstract

In strongly correlated system there are many (near)-degeneracies of eigenstates belonging to different total spin symmetry sectors. In projector type methods, like FCIQMC, efficiency of calculation strongly dependent on energy seperation of low lying eigenstates. $\Rightarrow \quad$ Advantages of $S U(2)$ - Stabilizing simulation by exclusion of degeneracies of low-lying excitation belonging to different spin-sectors - Hilbert space size reduction, through further block diagonalization - Identification of ground state total spin quantum numbers - Calculation of excited states, through spin-symmetry restrictions

GUGA

The (Graphical) Unitary Group Approach relies on the fact that a spin-preserving, non-relativistic Hamiltonian can be expressed in terms of the generators $E_{i j}$ of the unitary group $U(n)$
$\hat{H}=\sum_{i j}^{n} h_{i j} E_{i j}+\frac{1}{2} \sum_{i j k l}^{n} U_{i j k l}\left(E_{i j} E_{k l}-\delta_{j k} E_{i l}\right)$
with $\hat{E}_{i j}=\hat{a}_{i, \uparrow}^{\dagger} \hat{a}_{j, \uparrow}+\hat{a}_{i, \downarrow}^{\dagger} \hat{a}_{j, \downarrow}$ in terms of the usual fermionic creation and annihilation operators and fulfiling the commutation relations of the $U(n)$ generators.
The irreducible representations of $U(n)$, relevant for spin- $1 / 2$ systems, can be represented with Wey tableaux with max. two boxes per row. The number of two-box rows a and the number of one-box rows b, determine the electronic configuration. Eg.

Represents the system with $N_{e}=2 a+b=5$ elec trons and total spin $S=\frac{b}{2}=1 / 2$.
All possible ways to fill up a certain Weyl tableau with tokens, $1,2, \ldots, n$, corresponding to spatial orbitals, represent the all spin-adapted states of the Hilbert space of the system.
An efficient way to represent a state is through the stepvector ${ }^{3} \mathbf{d}$, containig information how each orbital gets spin-coupled, which allows efficient storage as bit-strings similar to Slater Determinants

1. $d_{i}=0$: empty orbital i
2. $d_{i}=1$: singly couple orbital $i, S+\frac{1}{2}$
3. $d_{i}=2$: singly couple orbital $i, S-\frac{1}{2}$
4. $d_{i}=3$: doubly occupied orbital i
$\begin{array}{ll}1 & 4 \\ 3 & 5\end{array} \rightarrow \quad \rightarrow \quad|d\rangle=|1,0,1,2,3\rangle$

Excitations - diagrammatic representation:

The difference in open orbital number $\Delta b_{k}=b_{k}-b_{k}^{\prime}$ has to be ± 1 for a single excitation to yield a non-zero overlap matrix element $\left\langle d^{\prime}\right| \widehat{E}_{i j}|d\rangle$. This restriction enables a decision-based excitation calculation through a branching tree: Nodes correspond to stepvector entries \mathbf{d}, left going edges to the $\Delta b=-1$ and right going edges to $\Delta b=+1$ branch of an excitation

Stochastic Excitation Generation
In FCIQMC no knowledge of the full Hilbert space is necessary. In the spawing step only one of the possible excitations for a given CSF has to be calculated efficiently \rightarrow only choose one specific path through the branching tree randomly. For example possible single excitations for: $\hat{E}_{26}|1,0,1,2,3,1,0\rangle$:

A direction change in the branching tree corresponds to different d^{\prime} values compared to d. Certain d_{j} values at the end of the excitation only allow specific Δb_{j} values

Ratios and Scaling

Relation between probability to choose d^{\prime} in branching tree $p^{b}\left(d^{\prime} \mid d\right)$ and magnitude of generator matrix element $\left\langle d^{\prime}\right| E_{i j}|d\rangle$ using branch weight function biasing for single excitations

- Almost optimal linear ratio $p^{b}\left(d^{\prime} \mid d\right) \sim\left|E_{d^{\prime} d}\right|$ for single excitations
- Computational effort scales linearly with the number of orbitals, $\sim \mathcal{O}(n)$
- Storage cost per state also scales only linearly with number of orbitals
- On-the-fly matrix element calculation during excitation generaration
- Double excitation $\hat{E}_{i j} \hat{E}_{k l}|d\rangle$ calculation is more demanding, but also only scales
linearly with n \Longrightarrow GUGA allows efficient $S U(2)$ symmetry implementation in the FCIQMC method!

Matrix Element based Biasing through Branch Weight-Functions

The time step τ in FCIQMC strongly depends on the ratio of the generation probability of state $\left|d^{\prime}\right\rangle$ given $|d\rangle, p\left(d \rightarrow d^{\prime}\right)$, and the magnitude of the off-diagonal Hamiltonian matrix element connecting those states: $\left.\left|\left\langle d^{\prime}\right| \hat{H}\right| d\right\rangle \mid$. $p\left(d^{\prime} \mid d\right)$ is given as a product of an orbital and branching term and $\left\langle d^{\prime}\right| \hat{H}|d\rangle$ as a sum of products, involving the one- and two-particle integrals and the matrix elements of the generators of the unitary group:

$$
p\left(d^{\prime} \mid d\right)=p^{o r b}\left(d^{\prime} \mid d\right) \cdot p^{b}\left(d^{\prime} \mid d\right) ; \quad\left\langle d^{\prime}\right| \hat{H}|d\rangle=\sum_{i j} h_{i j}\left\langle d^{\prime}\right| E_{i j}|d\rangle+\frac{1}{2} \sum_{i j k l} U_{i j k l}\left\langle d^{\prime}\right|\left(E_{i j} E_{k l}-\delta_{j k} E_{i l}\right)|d\rangle
$$

In the GUGA, matrix elements between CSFs can be calculated as a product of terms ${ }^{4}$ only depending on the stepvector values d_{k} and d_{k}^{\prime} and the number of open orbitals b_{k} :

$$
\left\langle d^{\prime}\right| \hat{E}_{i j}|d\rangle=\prod_{k \in(i, j)} W\left(d_{k}, d_{k}^{\prime}, b_{k}\right) \text { with } W\left(d_{k}, d_{k}^{\prime}, b_{k}\right)= \begin{cases}\mathcal{O}(1) & \text { for } d_{k}=d_{k}^{\prime} \\ \mathcal{O}\left(b_{k}^{-1}\right) & \text { for } d_{k} \neq d_{k}^{\prime}\end{cases}
$$

This allows an on-the-fly matrix element calculation and allows to ensure an almost optimal linear $p^{b}\left(d^{\prime} \mid d\right) \sim\left|E_{d^{\prime} d}\right|$ relation, by taking into account the "probabilistic weight" of different branches in the excitation generation choices, through branch weight functions $w_{ \pm}$. Since changing directions in the decision tree yields multiplicative factors of b^{-1} in the matrix element product:

From the start: each branch $\Delta b= \pm 1$ has a single leaf corresponding to a matrix element $\mathcal{O}(1)$ and for each following branching possibilities $s_{ \pm}, d_{k}=1$ for $\Delta b=1$ and $d_{k}=2$ for $\Delta b=+1$ an additional leaf of $\mathcal{O}\left(b^{-1}\right)$.

Preliminary Results on the Hubbard Model
The one-band Hubbard model in real-space formulation: $\quad \hat{H}=-t \sum_{<i, j>, \sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}+U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}$

- For strongly correlated electron systems, like the one-band Hubbard model in the intermediate to high interaction regime, the formulation of FCIQMC in spin-adapted eigenfunctions through the GUGA, should improve simulation characteristics.
- Groundstate results for the periodic, 18 -site, 18 electron Hubbard model with $U=1$, using a complete plane-wave basis set with 100000 walkers. Biggest simulation, using \hat{S}^{2} symmetry, in FCIQMC so far.
- Clear seperation between the spin $S=0,1,2$ groundstates.
- Higher interaction regime, bigger lattice sizes, and influence on simulation performance, topic of further investigation.

References

[1] G. Booth, A. Thom and A. Alavi, J. Chem. Phys. 131, 054106 (2009) [2] D. Cleland, G. Booth and A. Alavi, J. Chem. Phys. 132, 041103 (2010) 3] J. Paldus, Phys. Rev. A. 14, 1620 (1976)
[4] I. Shavitt, Int. J. Quantum Chem. Symp., 11: 131 (1977); Int. J. Quantum Chem. Symp., 12: 5 (1978).

