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Introduction and Goals
• Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm1 is a projector QMC method

•Application of e−τH yields the ground state of a system in the long-time limit

•Originally formulated in the full anti-symmetric space of Slater Determinants

• Easy usage of translational and lattice symmetries, but until now no application of SU(2) spin symmetry

⇒ Goal: Formulation in Ŝ2 eigenfunctions via the Graphical Unitary Group Approach (GUGA)

In strongly correlated system there are many (near)-degeneracies of eigenstates belonging to different total
spin symmetry sectors. In projector type methods, like FCIQMC, efficiency of calculation strongly dependent
on energy seperation of low lying eigenstates. ⇒ Advantages of SU(2) :

• Stabilizing simulation by exclusion of degeneracies of low-lying excitation belonging to different spin-sectors

•Hilbert space size reduction, through further block diagonalization

• Identification of ground state total spin quantum numbers

• Calculation of excited states, through spin-symmetry restrictions

FCIQMC
Projector QMCmethod in discrete, anti-symmetrized
space of Slater Determinants based on the imaginary-
time Schrödinger equation:

|Ψ0〉 = lim
τ→∞

e−τ (H−E0) |ΨT 〉

Sample wave function coefficients of |Ψ〉 =
∑

ci|Di〉
by stochastically evolving an ensemble of Nw signed
walkers in exponentially large Hilbert space.
Walker population dynamics governed by:

c
(n+1)
i = [1− τ (Hii − ES)] c

(n)
i︸ ︷︷ ︸

death/cloning

− τ
∑

j 6=i

Hijc
(n)
j

︸ ︷︷ ︸
spawning

Three algorithmic steps:

1. Spawn progeny with probability: τ |Hij|

2. Death or clone with probability: τ (Hii − ES)

3. Annihilate oppositely signed walkers on same de-
terminant

Annihilation step crucial to converge to correct
fermionic ground state solution. Energy shift ES
tuned to ensure constant walker population gives es-
timate for ground state energy E0.
Initiator approximation 2 ensures sign coherent
spawning events.
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A typical trend in walker growth for H20 in a cc-pVDZ basis set.

GUGA
The (Graphical) Unitary Group Approach relies
on the fact that a spin-preserving, non-relativistic
Hamiltonian can be expressed in terms of the gen-

erators Êij of the unitary group U(n):

Ĥ =

n∑

ij

hijEij +
1

2

n∑

ijkl

Uijkl

(
EijEkl − δjkEil

)

(1)

with Êij = â
†
i,↑âj,↑ + â

†
i,↓âj,↓ in terms of the usual

fermionic creation and annihilation operators and
fulfilling the commutation relations of the U(n) gen-
erators.
The irreducible representations of U(n), relevant
for spin-1/2 systems, can be represented with Weyl

tableaux with max. two boxes per row. The number
of two-box rows a and the number of one-box rows
b, determine the electronic configuration. Eg.:

→
1 1
2 3
5

,
1 2
2 4
4

,
1 2
3 3
4

, · · ·

Represents the system with Ne = 2a + b = 5 elec-
trons and total spin S = b

2 = 1/2.
All possible ways to fill up a certain Weyl tableau
with tokens, 1, 2, ..., n, corresponding to spatial or-
bitals, represent the all spin-adapted states of the
Hilbert space of the system.
An efficient way to represent a state is through the
stepvector 3 d, containig information how each or-
bital gets spin-coupled, which allows efficient storage
as bit-strings similar to Slater Determinants :

1. di = 0: empty orbital i

2. di = 1: singly couple orbital i, S + 1
2

3. di = 2: singly couple orbital i, S − 1
2

4. di = 3: doubly occupied orbital i

1 4
3 5
5

→ |d〉 = |1, 0, 1, 2, 3〉

Excitations - diagrammatic representation:
The difference in open orbital number ∆bk = bk − b′k has to be ±1 for a single excita-

tion to yield a non-zero overlap matrix element 〈d′|Êij|d〉. This restriction enables a
decision-based excitation calculation through a branching tree: Nodes correspond
to stepvector entries d, left going edges to the ∆b = −1 and right going edges to
∆b = +1 branch of an excitation.

start of an excitation: end of an excitation

0 1 2

3 1 2
intermediate region:

1 2 0 3 2 0 3 1

Stochastic Excitation Generation
In FCIQMC no knowledge of the full Hilbert space is necessary. In the spawing step

only one of the possible excitations for a given CSF has to be calculated efficiently!
→ only choose one specific path through the branching tree randomly.
For example possible single excitations for: Ê26|1, 0, 1, 2, 3, 1, 0〉:
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A direction change in the branching tree corresponds to different d′ values compared
to d. Certain dj values at the end of the excitation only allow specific ∆bj values.

Ratios and Scaling
Relation between probability to choose d′ in branching tree pb(d′|d) and magnitude
of generator matrix element 〈d′|Eij|d〉 using branch weight function biasing for single
excitations

0.00 0.02 0.04 0.06 0.08
|Ed′d|

0.00

0.02

0.04

0.06

0.08

p
b
(d

′ |d)

•Almost optimal linear ratio pb(d′|d) ∼ |Ed′d| for
single excitations

• Computational effort scales linearly with the
number of orbitals, ∼ O(n)

• Storage cost per state also scales only linearly

with number of orbitals

•On-the-fly matrix element calculation during
excitation generaration

•Double excitation ÊijÊkl|d〉 calculation is more demanding, but also only scales
linearly with n

=⇒ GUGA allows efficient SU(2) symmetry implementation in the FCIQMC
method!

Matrix Element based Biasing through Branch Weight-Functions
The time step τ in FCIQMC strongly depends on the ratio of the generation probability of state |d′〉 given |d〉, p(d → d′), and
the magnitude of the off-diagonal Hamiltonian matrix element connecting those states: |〈d′|Ĥ|d〉|.
p(d′|d) is given as a product of an orbital and branching term and 〈d′|Ĥ|d〉 as a sum of products, involving the one- and
two-particle integrals and the matrix elements of the generators of the unitary group:

p(d′|d) = porb(d′|d) · pb(d′|d); 〈d′|Ĥ|d〉 =
∑

ij

hij〈d
′|Eij|d〉 +

1

2

∑

ijkl

Uijkl〈d
′|
(
EijEkl − δjkEil

)
|d〉

In the GUGA, matrix elements between CSFs can be calculated as a product of terms4 only depending on the stepvector values
dk and d′k and the number of open orbitals bk:

〈d′|Êij|d〉 =
∏

k∈(i,j)

W (dk, d
′
k, bk) with W (dk, d

′
k, bk) =

{

O(1) for dk = d′k
O(b−1

k ) for dk 6= d′k

This allows an on-the-fly matrix element calculation and allows to ensure an almost optimal linear pb(d′|d) ∼ |Ed′d| relation,
by taking into account the “probabilistic weight” of different branches in the excitation generation choices, through branch weight

functions w± . Since changing directions in the decision tree yields multiplicative factors of b−1 in the matrix element product:
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O(1) O(b−2) O(b−1) O(b−1) O(1)

w− w+

=⇒ p− = w−
w−+w+

probability to choose
∆b = −1 path at start:

w− = 1 + s−
b +O(b−2)

w+ = 1 + s+
b +O(b−2)

Start:

1 2

Intermediate:

w− w+

b
w−

b
w+

probability to stay on path:

=⇒ ps =
bw±

bw±+w∓

From the start: each branch ∆b = ±1 has a single leaf corresponding to a matrix element O(1) and for each following branching
possibilities s±, dk = 1 for ∆b = 1 and dk = 2 for ∆b = +1 an additional leaf of O(b−1).

Preliminary Results on the Hubbard Model

The one-band Hubbard model in real-space formulation: Ĥ = −t
∑

<i,j>,σ

c
†
i,σcj,σ + U

∑

i

ni,↑ni,↓
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• For strongly correlated electron systems, like the one-band
Hubbard model in the intermediate to high interaction
regime, the formulation of FCIQMC in spin-adapted eigen-
functions through the GUGA, should improve simulation
characteristics.

•Groundstate results for the periodic, 18-site, 18 electron Hub-
bard model with U = 1, using a complete plane-wave basis set
with 100000 walkers. Biggest simulation, using Ŝ2 symmetry,
in FCIQMC so far.

• Clear seperation between the spin S = 0, 1, 2 groundstates.

•Higher interaction regime, bigger lattice sizes, and influence
on simulation performance, topic of further investigation.
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