Efficient Implementation of SU(2) Symmetry

Introduction and Goals

e Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm! is a projector QMC method
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e Application of e yields the ground state of a system in the long-time limit

e Originally formulated in the full anti-symmetric space of Slater Determinants

e Fasy usage of translational and lattice symmetries, but until now no application of SU(2) spin symmetry

= Goal: Formulation in S? eigenfunctions via the Graphical Unitary Group Approach (GUGA)

FCIQMC

Projector QMC method in discrete, anti-symmetrized

Annihilation step crucial to converge to correct

Using the Unitary Group in FCIQMC
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In strongly correlated system there are many (near)-degeneracies of eigenstates belonging to different total
spin symmetry sectors. In projector type methods, like FCIQMC, efliciency of calculation strongly dependent
on energy seperation of low lying eigenstates. =  Advantages of SU(2) :

e Stabilizing simulation by exclusion of degeneracies of low-lying excitation belonging to different spin-sectors
e Hilbert space size reduction, through further block diagonalization
e [dentification of ground state total spin quantum numbers

e Calculation of excited states, through spin-symmetry restrictions

GUGA

The (Graphical) Unitary Group Approach relies Represents the system W1th Ne = 2a 4+ b = 5 elec-

space of Slater Determinants based on the imaginary-
time Schrodinger equation:
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Sample wave function coefficients of |W) = > " ¢;|D;)
by stochastically evolving an ensemble of Ny, signed
walkers in exponentially large Hilbert space.
Walker population dynamics governed by:

fermionic ground state solution. Energy shift Eg
tuned to ensure constant walker population gives es-
timate for ground state energy Ej.

Initiator approximationQ ensures sign coherent
spawning events.

A typical trend in walker growth for H,0 in a cc-pVDZ basis set.
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on the fact that a spin-preserving, non-relativistic
Hamiltonian can be expressed in terms of the gen-
erators EAZ-]- of the unitary group U(n):
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with £;; = &;deﬁ + d;[, idja | In terms of the usual
fermionic creation and annihilation operators and

trons and total spin S = 2 = 1/2.

All possible ways to fill up a certain Weyl tableau
with tokens, 1,2, ...,n, corresponding to spatial or-
bitals, represent the all spin-adapted states of the
Hilbert space of the system.

An efficient way to represent a state is through the
stepvectm“g d, containig information how each or-
bital gets spin-coupled, which allows efficient storage
as bit-strings similar to Slater Determinants :
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fulfilling the commutation relations of the U(n) gen-
erators.
The irreducible representations of U(n), relevant

1. d; = 0: empty orbital 2

2. d; = 1: singly couple orbital 7, S + %

Vo
spawning

Three algorithmic steps:
1. Spawn progeny with probability: 7|H; ;|

Energy / Hartrees

for spin-1/2 systems, can be represented with Weyl
tableaux with max. two boxes per row. The number
of two-box rows a and the number of one-box rows
b, determine the electronic configuration. Eg.:

3. d; = 2: singly couple orbital 7, S — %

4. d; = 3: doubly occupied orbital 7

2. Death or clone with probability: 7 (H;; — Eg)
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3. Annihilate oppositely signed walkers on same de- 5000 10000 15000
] Iterations
terminant

Excitations - diagrammatic representation:

The difference in open orbital number Ab;. = by — b;{ has to be &1 for a single excita-

tion to yield a non-zero overlap matrix element (d’ \Ezj|d> This restriction enables a
decision-based excitation calculation through a branching tree: Nodes correspond
to stepvector entries d, left going edges to the Ab = —1 and right going edges to
Ab = +1 branch of an excitation.

end of an excitation
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start of an excitation:
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intermediate region:
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Stochastic Excitation Generation

In FCIQMC no knowledge of the full Hilbert space is necessary. In the spawing step
only one of the possible excitations for a given CSF has to be calculated efliciently!
— only choose one specific path through the branching tree randomly:.

For example possible single excitations for: E26|1, 0,1,2,3,1,0):
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A direction change in the branching tree corresponds to different d’ values compared
to d. Certain d; values at the end of the excitation only allow specific Ab; values.

Ratios and Scaling

Relation between probability to choose d’ in branching tree pb(d’ |d) and magnitude
of generator matrix element (d’| Ej;|d) using branch weight function biasing for single
excitations

0.08

e Almost optimal linear ratio p(d’|d) ~ |E ] for

single excitations

e Computational effort scales linearly with the
number of orbitals, ~ O(n)

e Storage cost per state also scales only linearly
with number of orbitals

0'08_00 0.102 0_104 o_log 0.08® On-the-fly matrix element calculation during
E; | excltation generaration

e Double excitation Evijkﬂd) calculation is more demanding, but also only scales
linearly with n

—>  GUGA allows efficient SU(2) symmetry implementation in the FCIQMC
method!
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Matrix Element based Biasing through Branch Weight-Functions

The time step 7 in FCIQMC strongly depends on the ratio of the generation probability of state |d') given |d), p(d — d'), and

the magnitude of the off-diagonal Hamiltonian matrix element connecting those states: |(d'|H|d)]|.
p(d'|d) is given as a product of an orbital and branching term and (d'|H|d) as a sum of products, involving the one- and
two-particle integrals and the matrix elements of the generators of the unitary group:
pld'|d) = p™"(d'|d) - p"(d'|d)
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In the GUGA, matrix elements between CSFs can be calculated as a product of terms™ only depending on the stepvector values

d;. and d;{ and the number of open orbitals by

for dj. = d;{

1
(| Eyjld) = o /
O, Yy fordy # d,

1] Wdg.dy,bp) with W(dy, dj, by) =
ke(i,g)

This allows an on-the-fly matrix element calculation and allows to ensure an almost optimal linear p?(d’|d) ~ |Epg| relation,
by taking into account the “probabilistic weight” of different branches in the excitation generation choices, through branch weight
functions w4 . Since changing directions in the decision tree yields multiplicative factors of bt in the matrix element product:
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From the start: each branch Ab = 41 has a single leaf corresponding to a matrix element O(1) and for each following branching
possibilities s+, dj = 1 for Ab =1 and dj. = 2 for Ab = +1 an additional leaf of O(b—1).

Preliminary Results on the Hubbard Model
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The one-band Hubbard model in real-space formulation:

<1,1>,0
— S =0Proj. E
_23| __ g=1 ProJ' el e [or strongly correlated electron systems, like the one-band
S : 5 b J ' . Hubbard model in the intermediate to high interaction
_24 =~ < ol regime, the formulation of FCIQMC in spin-adapted eigen-
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functions through the GUGA, should improve simulation
characteristics.
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e (Groundstate results for the periodic, 18-site, 18 electron Hub-
bard model with U = 1, using a complete plane-wave basis set
with 100000 walkers. Biggest simulation, using S? symmetry,

in FCIQMC so far.

e Clear seperation between the spin S = 0, 1, 2 groundstates.
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e Higher interaction regime, bigger lattice sizes, and influence
on simulation performance, topic of further investigation.
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