

FCIQMC

Efficient Implementation of SU(2) Symmetry Using the Unitary Group in FCIQMC

W. Dobrautz[†], Simon D. Smart and Ali Alavi[‡] Max Planck Institute for Solid State Research

email: [†]werner.dobrautz@gmail.com, [‡]A.Alavi@fkf.mpg.de

Introduction and Goals

• Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm¹ is a projector QMC method

- Application of $e^{-\tau H}$ yields the ground state of a system in the long-time limit
- Originally formulated in the full anti-symmetric space of Slater Determinants
- Easy usage of translational and lattice symmetries, but until now no application of SU(2) spin symmetry
- Goal: Formulation in \hat{S}^2 eigenfunctions via the *Graphical Unitary Group Approach* (GUGA)

In strongly correlated system there are many (near)-degeneracies of eigenstates belonging to different total spin symmetry sectors. In projector type methods, like FCIQMC, efficiency of calculation strongly dependent on energy separation of low lying eigenstates. \Rightarrow Advantages of SU(2):

• Stabilizing simulation by exclusion of degeneracies of low-lying excitation belonging to different spin-sectors

- Hilbert space size reduction, through further block diagonalization
- Identification of ground state total spin quantum numbers
- Calculation of excited states, through spin-symmetry restrictions

GUGA

Projector QMC method in discrete, anti-symmetrized space of Slater Determinants based on the imaginarytime Schrödinger equation:

Annihilation step crucial to converge to correct fermionic ground state solution. Energy shift E_S tuned to ensure constant walker population gives estimate for ground state energy E_0 . Initiator approximation² ensures sign coherent

The (Graphical) Unitary Group Approach relies on the fact that a spin-preserving, non-relativistic Hamiltonian can be expressed in terms of the generators E_{ij} of the unitary group U(n):

Represents the system with $N_e = 2a + b = 5$ electrons and total spin $S = \frac{b}{2} = 1/2$. All possible ways to fill up a certain Weyl tableau with tokens, 1, 2, ..., n, corresponding to spatial orbitals, represent the all spin-adapted states of the Hilbert space of the system. An efficient way to represent a state is through the $stepvector^3$ d, containing information how each orbital gets spin-coupled, which allows efficient storage as bit-strings similar to Slater Determinants :

Sample wave function coefficients of $|\Psi\rangle = \sum c_i |D_i\rangle$ by stochastically evolving an ensemble of N_w signed walkers in exponentially large Hilbert space. Walker population dynamics governed by:

$$c_{i}^{(n+1)} = \underbrace{\left[1 - \tau \left(H_{ii} - E_{S}\right)\right] c_{i}^{(n)}}_{\text{death/cloning}} - \underbrace{\tau \sum_{j \neq i} H_{ij} c_{j}^{(n)}}_{\text{spawning}}$$

Three algorithmic steps:

- 1. Spawn progeny with probability: $\tau |H_{ij}|$
- 2. Death or clone with probability: $\tau (H_{ii} E_S)$
- 3. Annihilate oppositely signed walkers on same determinant

$$\hat{H} = \sum_{ij}^{n} h_{ij} E_{ij} + \frac{1}{2} \sum_{ijkl}^{n} U_{ijkl} \left(E_{ij} E_{kl} - \delta_{jk} E_{il} \right)$$

(1)with $\hat{E}_{ij} = \hat{a}_{i,\uparrow}^{\dagger} \hat{a}_{j,\uparrow} + \hat{a}_{i,\downarrow}^{\dagger} \hat{a}_{j,\downarrow}$ in terms of the usual fermionic creation and annihilation operators and fulfilling the commutation relations of the U(n) generators.

The irreducible representations of U(n), relevant for spin-1/2 systems, can be represented with Weyl tableaux with max. two boxes per row. The number of two-box rows a and the number of one-box rows b, determine the electronic configuration. Eg.:

$\begin{array}{c c} & 1 \\ \hline \\ \hline \\ \end{array} \rightarrow \begin{array}{c} 2 \\ 5 \end{array}$	$ \begin{array}{c} 1 \\ 3 \\ 4 \end{array} $ $ \begin{array}{c} 1 \\ 2 \\ 4 \end{array} $	$ \begin{array}{c} 2 \\ 4 \\ - 4 \\ - 4 \end{array} $ $ \begin{array}{c} 1 \\ 3 \\ - 4 \end{array} $	$\frac{2}{3}, \cdots$
---	---	--	-----------------------

1. $d_i = 0$: empty orbital *i*

2. $d_i = 1$: singly couple orbital $i, S + \frac{1}{2}$ 3. $d_i = 2$: singly couple orbital $i, S - \frac{1}{2}$ 4. $d_i = 3$: doubly occupied orbital *i*

$$\begin{array}{c|ccc} 1 & 4 \\ \hline 3 & 5 \\ \hline 5 \end{array} & \rightarrow & |d\rangle = |1, 0, 1, 2, 3\rangle \end{array}$$

Excitations - diagrammatic representation:

The difference in open orbital number $\Delta b_k = b_k - b'_k$ has to be ± 1 for a single excitation to yield a non-zero overlap matrix element $\langle d' | \hat{E}_{ij} | d \rangle$. This restriction enables a decision-based excitation calculation through a **branching tree**: Nodes correspond to stepvector entries **d**, left going edges to the $\Delta b = -1$ and right going edges to $\Delta b = +1$ branch of an excitation.

start of an excitation:

end of an excitation

intermediate region:

Matrix Element based Biasing through Branch Weight-Functions

The time step τ in FCIQMC strongly depends on the ratio of the generation probability of state $|d'\rangle$ given $|d\rangle$, $p(d \rightarrow d')$, and the magnitude of the off-diagonal Hamiltonian matrix element connecting those states: $|\langle d'|\hat{H}|d\rangle|$. p(d'|d) is given as a product of an *orbital* and *branching* term and $\langle d'|\hat{H}|d\rangle$ as a sum of products, involving the one- and

two-particle integrals and the matrix elements of the generators of the unitary group:

$$p(d'|d) = p^{orb}(d'|d) \cdot p^{b}(d'|d); \qquad \langle d'|\hat{H}|d\rangle = \sum_{ij} h_{ij} \langle d'|E_{ij}|d\rangle + \frac{1}{2} \sum_{ijkl} U_{ijkl} \langle d'| \left(E_{ij}E_{kl} - \delta_{jk}E_{il}\right)|d\rangle$$

In the GUGA, matrix elements between CSFs can be calculated as a product of terms⁴ only depending on the stepvector values d_k and d'_k and the number of open orbitals b_k :

3 3 0 2 0

Stochastic Excitation Generation

In FCIQMC no knowledge of the full Hilbert space is necessary. In the spawing step only **one** of the possible excitations for a given CSF has to be calculated efficiently! \rightarrow only choose *one* specific path through the branching tree randomly. For example possible single excitations for: $E_{26}|1, 0, 1, 2, 3, 1, 0\rangle$:

$$\langle d'|\hat{E}_{ij}|d\rangle = \prod_{k \in (i,j)} W(d_k, d'_k, b_k) \quad \text{with} \quad W(d_k, d'_k, b_k) = \begin{cases} \mathcal{O}(1) & \text{for } d_k = d'_k \\ \mathcal{O}(b_k^{-1}) & \text{for } d_k \neq d'_k \end{cases}$$

This allows an **on-the-fly** matrix element calculation and allows to ensure an almost optimal linear $p^b(d'|d) \sim |E_{d'd}|$ relation, by taking into account the "probabilistic weight" of different branches in the excitation generation choices, through *branch weight* functions w_{\pm} . Since changing directions in the decision tree yields multiplicative factors of b^{-1} in the matrix element product:

From the start: each branch $\Delta b = \pm 1$ has a single *leaf* corresponding to a matrix element $\mathcal{O}(1)$ and for each following *branching* possibilities s_{\pm} , $d_k = 1$ for $\Delta b = 1$ and $d_k = 2$ for $\Delta b = +1$ an additional leaf of $\mathcal{O}(b^{-1})$.

Preliminary Results on the Hubbard Model

The one-band Hubbard model in real-space formulation:

= 0 Proj. E

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

• For strongly correlated electron systems, like the one-band Hubbard model in the intermediate to high interaction regime, the formulation of FCIQMC in spin-adapted eigenfunctions through the GUGA, should improve simulation characteristics.

Ratios and Scaling

Relation between probability to choose d' in branching tree $p^{b}(d'|d)$ and magnitude of generator matrix element $\langle d' | E_{ij} | d \rangle$ using branch weight function biasing for single excitations

• Double excitation $\hat{E}_{ij}\hat{E}_{kl}|d\rangle$ calculation is more demanding, but also only scales linearly with n

GUGA allows efficient SU(2) symmetry implementation in the FCIQMC \implies method!

• Groundstate results for the periodic, 18-site, 18 electron Hubbard model with U = 1, using a complete plane-wave basis set with 100000 walkers. Biggest simulation, using \hat{S}^2 symmetry, in FCIQMC so far.

• Clear separation between the spin S = 0, 1, 2 groundstates. • Higher interaction regime, bigger lattice sizes, and influence on simulation performance, topic of further investigation.

References

-23

[1] G. Booth, A. Thom and A. Alavi, J. Chem. Phys. **131**, 054106 (2009)

[2] D. Cleland, G. Booth and A. Alavi, J. Chem. Phys. **132**, 041103 (2010)

[3] J. Paldus, Phys. Rev. A. **14**, 1620 (1976).

[4] I. Shavitt, Int. J. Quantum Chem. Symp., **11**: 131 (1977); Int. J. Quantum Chem. Symp., **12**: 5 (1978).